mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-21 14:50:36 +08:00
Ball Query
Summary: Implementation of ball query from PointNet++. This function is similar to KNN (find the neighbors in p2 for all points in p1). These are the key differences: - It will return the **first** K neighbors within a specified radius as opposed to the **closest** K neighbors. - As all the points in p2 do not need to be considered to find the closest K, the algorithm is much faster than KNN when p2 has a large number of points. - The neighbors are not sorted - Due to the radius threshold it is not guaranteed that there will be K neighbors even if there are more than K points in p2. - The padding value for `idx` is -1 instead of 0. # Note: - Some of the code is very similar to KNN so it could be possible to modify the KNN forward kernels to support ball query. - Some users might want to use kNN with ball query - for this we could provide a wrapper function around the current `knn_points` which enables applying the radius threshold afterwards as an alternative. This could be called `ball_query_knn`. Reviewed By: jcjohnson Differential Revision: D30261362 fbshipit-source-id: 66b6a7e0114beff7164daf7eba21546ff41ec450
This commit is contained in:
committed by
Facebook GitHub Bot
parent
e5c58a8a8b
commit
103da63393
130
pytorch3d/csrc/ball_query/ball_query.cu
Normal file
130
pytorch3d/csrc/ball_query/ball_query.cu
Normal file
@@ -0,0 +1,130 @@
|
||||
/*
|
||||
* Copyright (c) Facebook, Inc. and its affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under the BSD-style license found in the
|
||||
* LICENSE file in the root directory of this source tree.
|
||||
*/
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "utils/pytorch3d_cutils.h"
|
||||
|
||||
// A chunk of work is blocksize-many points of P1.
|
||||
// The number of potential chunks to do is N*(1+(P1-1)/blocksize)
|
||||
// call (1+(P1-1)/blocksize) chunks_per_cloud
|
||||
// These chunks are divided among the gridSize-many blocks.
|
||||
// In block b, we work on chunks b, b+gridSize, b+2*gridSize etc .
|
||||
// In chunk i, we work on cloud i/chunks_per_cloud on points starting from
|
||||
// blocksize*(i%chunks_per_cloud).
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void BallQueryKernel(
|
||||
const at::PackedTensorAccessor64<scalar_t, 3, at::RestrictPtrTraits> p1,
|
||||
const at::PackedTensorAccessor64<scalar_t, 3, at::RestrictPtrTraits> p2,
|
||||
const at::PackedTensorAccessor64<int64_t, 1, at::RestrictPtrTraits>
|
||||
lengths1,
|
||||
const at::PackedTensorAccessor64<int64_t, 1, at::RestrictPtrTraits>
|
||||
lengths2,
|
||||
at::PackedTensorAccessor64<int64_t, 3, at::RestrictPtrTraits> idxs,
|
||||
at::PackedTensorAccessor64<scalar_t, 3, at::RestrictPtrTraits> dists,
|
||||
const int64_t K,
|
||||
const float radius2) {
|
||||
const int64_t N = p1.size(0);
|
||||
const int64_t chunks_per_cloud = (1 + (p1.size(1) - 1) / blockDim.x);
|
||||
const int64_t chunks_to_do = N * chunks_per_cloud;
|
||||
const int D = p1.size(2);
|
||||
|
||||
for (int64_t chunk = blockIdx.x; chunk < chunks_to_do; chunk += gridDim.x) {
|
||||
const int64_t n = chunk / chunks_per_cloud; // batch_index
|
||||
const int64_t start_point = blockDim.x * (chunk % chunks_per_cloud);
|
||||
int64_t i = start_point + threadIdx.x;
|
||||
|
||||
// Check if point is valid in heterogeneous tensor
|
||||
if (i >= lengths1[n]) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Iterate over points in p2 until desired count is reached or
|
||||
// all points have been considered
|
||||
for (int64_t j = 0, count = 0; j < lengths2[n] && count < K; ++j) {
|
||||
// Calculate the distance between the points
|
||||
scalar_t dist2 = 0.0;
|
||||
for (int d = 0; d < D; ++d) {
|
||||
scalar_t diff = p1[n][i][d] - p2[n][j][d];
|
||||
dist2 += (diff * diff);
|
||||
}
|
||||
|
||||
if (dist2 < radius2) {
|
||||
// If the point is within the radius
|
||||
// Set the value of the index to the point index
|
||||
idxs[n][i][count] = j;
|
||||
dists[n][i][count] = dist2;
|
||||
|
||||
// increment the number of selected samples for the point i
|
||||
++count;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<at::Tensor, at::Tensor> BallQueryCuda(
|
||||
const at::Tensor& p1, // (N, P1, 3)
|
||||
const at::Tensor& p2, // (N, P2, 3)
|
||||
const at::Tensor& lengths1, // (N,)
|
||||
const at::Tensor& lengths2, // (N,)
|
||||
int K,
|
||||
float radius) {
|
||||
// Check inputs are on the same device
|
||||
at::TensorArg p1_t{p1, "p1", 1}, p2_t{p2, "p2", 2},
|
||||
lengths1_t{lengths1, "lengths1", 3}, lengths2_t{lengths2, "lengths2", 4};
|
||||
at::CheckedFrom c = "BallQueryCuda";
|
||||
at::checkAllSameGPU(c, {p1_t, p2_t, lengths1_t, lengths2_t});
|
||||
at::checkAllSameType(c, {p1_t, p2_t});
|
||||
|
||||
// Set the device for the kernel launch based on the device of p1
|
||||
at::cuda::CUDAGuard device_guard(p1.device());
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
TORCH_CHECK(
|
||||
p2.size(2) == p1.size(2), "Point sets must have the same last dimension");
|
||||
|
||||
const int N = p1.size(0);
|
||||
const int P1 = p1.size(1);
|
||||
const int64_t K_64 = K;
|
||||
const float radius2 = radius * radius;
|
||||
|
||||
// Output tensor with indices of neighbors for each point in p1
|
||||
auto long_dtype = lengths1.options().dtype(at::kLong);
|
||||
auto idxs = at::full({N, P1, K}, -1, long_dtype);
|
||||
auto dists = at::zeros({N, P1, K}, p1.options());
|
||||
|
||||
if (idxs.numel() == 0) {
|
||||
AT_CUDA_CHECK(cudaGetLastError());
|
||||
return std::make_tuple(idxs, dists);
|
||||
}
|
||||
|
||||
const size_t blocks = 256;
|
||||
const size_t threads = 256;
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES(
|
||||
p1.scalar_type(), "ball_query_kernel_cuda", ([&] {
|
||||
BallQueryKernel<<<blocks, threads, 0, stream>>>(
|
||||
p1.packed_accessor64<float, 3, at::RestrictPtrTraits>(),
|
||||
p2.packed_accessor64<float, 3, at::RestrictPtrTraits>(),
|
||||
lengths1.packed_accessor64<int64_t, 1, at::RestrictPtrTraits>(),
|
||||
lengths2.packed_accessor64<int64_t, 1, at::RestrictPtrTraits>(),
|
||||
idxs.packed_accessor64<int64_t, 3, at::RestrictPtrTraits>(),
|
||||
dists.packed_accessor64<float, 3, at::RestrictPtrTraits>(),
|
||||
K_64,
|
||||
radius2);
|
||||
}));
|
||||
|
||||
AT_CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
return std::make_tuple(idxs, dists);
|
||||
}
|
||||
91
pytorch3d/csrc/ball_query/ball_query.h
Normal file
91
pytorch3d/csrc/ball_query/ball_query.h
Normal file
@@ -0,0 +1,91 @@
|
||||
/*
|
||||
* Copyright (c) Facebook, Inc. and its affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under the BSD-style license found in the
|
||||
* LICENSE file in the root directory of this source tree.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include <torch/extension.h>
|
||||
#include <tuple>
|
||||
#include "utils/pytorch3d_cutils.h"
|
||||
|
||||
// Compute indices of K neighbors in pointcloud p2 to points
|
||||
// in pointcloud p1 which fall within a specified radius
|
||||
//
|
||||
// Args:
|
||||
// p1: FloatTensor of shape (N, P1, D) giving a batch of pointclouds each
|
||||
// containing P1 points of dimension D.
|
||||
// p2: FloatTensor of shape (N, P2, D) giving a batch of pointclouds each
|
||||
// containing P2 points of dimension D.
|
||||
// lengths1: LongTensor, shape (N,), giving actual length of each P1 cloud.
|
||||
// lengths2: LongTensor, shape (N,), giving actual length of each P2 cloud.
|
||||
// K: Integer giving the upper bound on the number of samples to take
|
||||
// within the radius
|
||||
// radius: the radius around each point within which the neighbors need to be
|
||||
// located
|
||||
//
|
||||
// Returns:
|
||||
// p1_neighbor_idx: LongTensor of shape (N, P1, K), where
|
||||
// p1_neighbor_idx[n, i, k] = j means that the kth
|
||||
// neighbor to p1[n, i] in the cloud p2[n] is p2[n, j].
|
||||
// This is padded with -1s both where a cloud in p2 has fewer than
|
||||
// S points and where a cloud in p1 has fewer than P1 points and
|
||||
// also if there are fewer than K points which satisfy the radius
|
||||
// threshold.
|
||||
//
|
||||
// p1_neighbor_dists: FloatTensor of shape (N, P1, K) containing the squared
|
||||
// distance from each point p1[n, p, :] to its K neighbors
|
||||
// p2[n, p1_neighbor_idx[n, p, k], :].
|
||||
|
||||
// CPU implementation
|
||||
std::tuple<at::Tensor, at::Tensor> BallQueryCpu(
|
||||
const at::Tensor& p1,
|
||||
const at::Tensor& p2,
|
||||
const at::Tensor& lengths1,
|
||||
const at::Tensor& lengths2,
|
||||
const int K,
|
||||
const float radius);
|
||||
|
||||
// CUDA implementation
|
||||
std::tuple<at::Tensor, at::Tensor> BallQueryCuda(
|
||||
const at::Tensor& p1,
|
||||
const at::Tensor& p2,
|
||||
const at::Tensor& lengths1,
|
||||
const at::Tensor& lengths2,
|
||||
const int K,
|
||||
const float radius);
|
||||
|
||||
// Implementation which is exposed
|
||||
// Note: the backward pass reuses the KNearestNeighborBackward kernel
|
||||
inline std::tuple<at::Tensor, at::Tensor> BallQuery(
|
||||
const at::Tensor& p1,
|
||||
const at::Tensor& p2,
|
||||
const at::Tensor& lengths1,
|
||||
const at::Tensor& lengths2,
|
||||
int K,
|
||||
float radius) {
|
||||
if (p1.is_cuda() || p2.is_cuda()) {
|
||||
#ifdef WITH_CUDA
|
||||
CHECK_CUDA(p1);
|
||||
CHECK_CUDA(p2);
|
||||
return BallQueryCuda(
|
||||
p1.contiguous(),
|
||||
p2.contiguous(),
|
||||
lengths1.contiguous(),
|
||||
lengths2.contiguous(),
|
||||
K,
|
||||
radius);
|
||||
#else
|
||||
AT_ERROR("Not compiled with GPU support.");
|
||||
#endif
|
||||
}
|
||||
return BallQueryCpu(
|
||||
p1.contiguous(),
|
||||
p2.contiguous(),
|
||||
lengths1.contiguous(),
|
||||
lengths2.contiguous(),
|
||||
K,
|
||||
radius);
|
||||
}
|
||||
55
pytorch3d/csrc/ball_query/ball_query_cpu.cpp
Normal file
55
pytorch3d/csrc/ball_query/ball_query_cpu.cpp
Normal file
@@ -0,0 +1,55 @@
|
||||
/*
|
||||
* Copyright (c) Facebook, Inc. and its affiliates.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under the BSD-style license found in the
|
||||
* LICENSE file in the root directory of this source tree.
|
||||
*/
|
||||
|
||||
#include <torch/extension.h>
|
||||
#include <queue>
|
||||
#include <tuple>
|
||||
|
||||
std::tuple<at::Tensor, at::Tensor> BallQueryCpu(
|
||||
const at::Tensor& p1,
|
||||
const at::Tensor& p2,
|
||||
const at::Tensor& lengths1,
|
||||
const at::Tensor& lengths2,
|
||||
int K,
|
||||
float radius) {
|
||||
const int N = p1.size(0);
|
||||
const int P1 = p1.size(1);
|
||||
const int D = p1.size(2);
|
||||
|
||||
auto long_opts = lengths1.options().dtype(torch::kInt64);
|
||||
torch::Tensor idxs = torch::full({N, P1, K}, -1, long_opts);
|
||||
torch::Tensor dists = torch::full({N, P1, K}, 0, p1.options());
|
||||
const float radius2 = radius * radius;
|
||||
|
||||
auto p1_a = p1.accessor<float, 3>();
|
||||
auto p2_a = p2.accessor<float, 3>();
|
||||
auto lengths1_a = lengths1.accessor<int64_t, 1>();
|
||||
auto lengths2_a = lengths2.accessor<int64_t, 1>();
|
||||
auto idxs_a = idxs.accessor<int64_t, 3>();
|
||||
auto dists_a = dists.accessor<float, 3>();
|
||||
|
||||
for (int n = 0; n < N; ++n) {
|
||||
const int64_t length1 = lengths1_a[n];
|
||||
const int64_t length2 = lengths2_a[n];
|
||||
for (int64_t i = 0; i < length1; ++i) {
|
||||
for (int64_t j = 0, count = 0; j < length2 && count < K; ++j) {
|
||||
float dist2 = 0;
|
||||
for (int d = 0; d < D; ++d) {
|
||||
float diff = p1_a[n][i][d] - p2_a[n][j][d];
|
||||
dist2 += diff * diff;
|
||||
}
|
||||
if (dist2 < radius2) {
|
||||
dists_a[n][i][count] = dist2;
|
||||
idxs_a[n][i][count] = j;
|
||||
++count;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::make_tuple(idxs, dists);
|
||||
}
|
||||
@@ -12,6 +12,7 @@
|
||||
// clang-format on
|
||||
#include "./pulsar/pytorch/renderer.h"
|
||||
#include "./pulsar/pytorch/tensor_util.h"
|
||||
#include "ball_query/ball_query.h"
|
||||
#include "blending/sigmoid_alpha_blend.h"
|
||||
#include "compositing/alpha_composite.h"
|
||||
#include "compositing/norm_weighted_sum.h"
|
||||
@@ -38,6 +39,9 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
#endif
|
||||
m.def("knn_points_idx", &KNearestNeighborIdx);
|
||||
m.def("knn_points_backward", &KNearestNeighborBackward);
|
||||
|
||||
// Ball Query
|
||||
m.def("ball_query", &BallQuery);
|
||||
m.def(
|
||||
"mesh_normal_consistency_find_verts", &MeshNormalConsistencyFindVertices);
|
||||
m.def("gather_scatter", &GatherScatter);
|
||||
|
||||
@@ -477,6 +477,10 @@ __global__ void KNearestNeighborBackwardKernel(
|
||||
const float grad_dist = grad_dists[n * P1 * K + p1_idx * K + k];
|
||||
// index of point in p2 corresponding to the k-th nearest neighbor
|
||||
const size_t p2_idx = idxs[n * P1 * K + p1_idx * K + k];
|
||||
// If the index is the pad value of -1 then ignore it
|
||||
if (p2_idx == -1) {
|
||||
continue;
|
||||
}
|
||||
const float diff = 2.0 * grad_dist *
|
||||
(p1[n * P1 * D + p1_idx * D + d] - p2[n * P2 * D + p2_idx * D + d]);
|
||||
atomicAdd(grad_p1 + n * P1 * D + p1_idx * D + d, diff);
|
||||
|
||||
@@ -99,6 +99,10 @@ std::tuple<at::Tensor, at::Tensor> KNearestNeighborBackwardCpu(
|
||||
for (int64_t i1 = 0; i1 < length1; ++i1) {
|
||||
for (int64_t k = 0; k < length2; ++k) {
|
||||
const int64_t i2 = idxs_a[n][i1][k];
|
||||
// If the index is the pad value of -1 then ignore it
|
||||
if (i2 == -1) {
|
||||
continue;
|
||||
}
|
||||
for (int64_t d = 0; d < D; ++d) {
|
||||
const float diff =
|
||||
2.0f * grad_dists_a[n][i1][k] * (p1_a[n][i1][d] - p2_a[n][i2][d]);
|
||||
|
||||
Reference in New Issue
Block a user