refactor laplacian matrices

Summary:
Refactor of all functions to compute laplacian matrices in one file.
Support for:
* Standard Laplacian
* Cotangent Laplacian
* Norm Laplacian

Reviewed By: nikhilaravi

Differential Revision: D29297466

fbshipit-source-id: b96b88915ce8ef0c2f5693ec9b179fd27b70abf9
This commit is contained in:
Georgia Gkioxari
2021-06-24 03:52:30 -07:00
committed by Facebook GitHub Bot
parent da9974b416
commit 07a5a68d50
8 changed files with 297 additions and 197 deletions

View File

@@ -406,34 +406,6 @@ class TestMeshes(TestCaseMixin, unittest.TestCase):
self.assertFalse(newv.requires_grad)
self.assertClose(newv, v)
def test_laplacian_packed(self):
def naive_laplacian_packed(meshes):
verts_packed = meshes.verts_packed()
edges_packed = meshes.edges_packed()
V = verts_packed.shape[0]
L = torch.zeros((V, V), dtype=torch.float32, device=meshes.device)
for e in edges_packed:
L[e[0], e[1]] = 1
# symetric
L[e[1], e[0]] = 1
deg = L.sum(1).view(-1, 1)
deg[deg > 0] = 1.0 / deg[deg > 0]
L = L * deg
diag = torch.eye(V, dtype=torch.float32, device=meshes.device)
L.masked_fill_(diag > 0, -1)
return L
# Note that we don't test with random meshes for this case, as the
# definition of Laplacian is defined for simple graphs (aka valid meshes)
meshes = init_simple_mesh("cuda:0")
lapl_naive = naive_laplacian_packed(meshes)
lapl = meshes.laplacian_packed().to_dense()
# check with naive
self.assertClose(lapl, lapl_naive)
def test_offset_verts(self):
def naive_offset_verts(mesh, vert_offsets_packed):
# new Meshes class