mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-19 05:40:34 +08:00
refactor laplacian matrices
Summary: Refactor of all functions to compute laplacian matrices in one file. Support for: * Standard Laplacian * Cotangent Laplacian * Norm Laplacian Reviewed By: nikhilaravi Differential Revision: D29297466 fbshipit-source-id: b96b88915ce8ef0c2f5693ec9b179fd27b70abf9
This commit is contained in:
committed by
Facebook GitHub Bot
parent
da9974b416
commit
07a5a68d50
119
tests/test_laplacian_matrices.py
Normal file
119
tests/test_laplacian_matrices.py
Normal file
@@ -0,0 +1,119 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
from common_testing import TestCaseMixin, get_random_cuda_device
|
||||
from pytorch3d.ops import laplacian, norm_laplacian, cot_laplacian
|
||||
from pytorch3d.structures.meshes import Meshes
|
||||
|
||||
|
||||
class TestLaplacianMatrices(TestCaseMixin, unittest.TestCase):
|
||||
def setUp(self) -> None:
|
||||
super().setUp()
|
||||
torch.manual_seed(1)
|
||||
|
||||
def init_mesh(self) -> Meshes:
|
||||
V, F = 32, 64
|
||||
device = get_random_cuda_device()
|
||||
# random vertices
|
||||
verts = torch.rand((V, 3), dtype=torch.float32, device=device)
|
||||
# random valid faces (no self circles, e.g. (v0, v0, v1))
|
||||
faces = torch.stack([torch.randperm(V) for f in range(F)], dim=0)[:, :3]
|
||||
faces = faces.to(device=device)
|
||||
return Meshes(verts=[verts], faces=[faces])
|
||||
|
||||
def test_laplacian(self):
|
||||
mesh = self.init_mesh()
|
||||
verts = mesh.verts_packed()
|
||||
edges = mesh.edges_packed()
|
||||
V, E = verts.shape[0], edges.shape[0]
|
||||
|
||||
L = laplacian(verts, edges)
|
||||
|
||||
Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device)
|
||||
for e in range(E):
|
||||
e0, e1 = edges[e]
|
||||
Lnaive[e0, e1] = 1
|
||||
# symetric
|
||||
Lnaive[e1, e0] = 1
|
||||
|
||||
deg = Lnaive.sum(1).view(-1, 1)
|
||||
deg[deg > 0] = 1.0 / deg[deg > 0]
|
||||
Lnaive = Lnaive * deg
|
||||
diag = torch.eye(V, dtype=torch.float32, device=mesh.device)
|
||||
Lnaive.masked_fill_(diag > 0, -1)
|
||||
|
||||
self.assertClose(L.to_dense(), Lnaive)
|
||||
|
||||
def test_cot_laplacian(self):
|
||||
mesh = self.init_mesh()
|
||||
verts = mesh.verts_packed()
|
||||
faces = mesh.faces_packed()
|
||||
V, F = verts.shape[0], faces.shape[0]
|
||||
|
||||
eps = 1e-12
|
||||
|
||||
L, inv_areas = cot_laplacian(verts, faces, eps=eps)
|
||||
|
||||
Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device)
|
||||
inv_areas_naive = torch.zeros((V, 1), dtype=torch.float32, device=verts.device)
|
||||
|
||||
for f in faces:
|
||||
v0 = verts[f[0], :]
|
||||
v1 = verts[f[1], :]
|
||||
v2 = verts[f[2], :]
|
||||
A = (v1 - v2).norm()
|
||||
B = (v0 - v2).norm()
|
||||
C = (v0 - v1).norm()
|
||||
s = 0.5 * (A + B + C)
|
||||
|
||||
face_area = (s * (s - A) * (s - B) * (s - C)).clamp_(min=1e-12).sqrt()
|
||||
inv_areas_naive[f[0]] += face_area
|
||||
inv_areas_naive[f[1]] += face_area
|
||||
inv_areas_naive[f[2]] += face_area
|
||||
|
||||
A2, B2, C2 = A * A, B * B, C * C
|
||||
cota = (B2 + C2 - A2) / face_area / 4.0
|
||||
cotb = (A2 + C2 - B2) / face_area / 4.0
|
||||
cotc = (A2 + B2 - C2) / face_area / 4.0
|
||||
|
||||
Lnaive[f[1], f[2]] += cota
|
||||
Lnaive[f[2], f[0]] += cotb
|
||||
Lnaive[f[0], f[1]] += cotc
|
||||
# symetric
|
||||
Lnaive[f[2], f[1]] += cota
|
||||
Lnaive[f[0], f[2]] += cotb
|
||||
Lnaive[f[1], f[0]] += cotc
|
||||
|
||||
idx = inv_areas_naive > 0
|
||||
inv_areas_naive[idx] = 1.0 / inv_areas_naive[idx]
|
||||
|
||||
self.assertClose(inv_areas, inv_areas_naive)
|
||||
self.assertClose(L.to_dense(), Lnaive)
|
||||
|
||||
def test_norm_laplacian(self):
|
||||
mesh = self.init_mesh()
|
||||
verts = mesh.verts_packed()
|
||||
edges = mesh.edges_packed()
|
||||
V, E = verts.shape[0], edges.shape[0]
|
||||
|
||||
eps = 1e-12
|
||||
|
||||
L = norm_laplacian(verts, edges, eps=eps)
|
||||
|
||||
Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device)
|
||||
for e in range(E):
|
||||
e0, e1 = edges[e]
|
||||
v0 = verts[e0]
|
||||
v1 = verts[e1]
|
||||
|
||||
w01 = 1.0 / ((v0 - v1).norm() + eps)
|
||||
Lnaive[e0, e1] += w01
|
||||
Lnaive[e1, e0] += w01
|
||||
|
||||
self.assertClose(L.to_dense(), Lnaive)
|
||||
@@ -10,7 +10,6 @@ import unittest
|
||||
import torch
|
||||
from common_testing import TestCaseMixin, get_random_cuda_device
|
||||
from pytorch3d.ops import taubin_smoothing
|
||||
from pytorch3d.ops.mesh_filtering import norm_laplacian
|
||||
from pytorch3d.structures import Meshes
|
||||
from pytorch3d.utils import ico_sphere
|
||||
|
||||
@@ -40,39 +39,3 @@ class TestTaubinSmoothing(TestCaseMixin, unittest.TestCase):
|
||||
smooth_dist = (smooth_verts - ico_verts).norm(dim=-1).mean()
|
||||
dist = (verts - ico_verts).norm(dim=-1).mean()
|
||||
self.assertTrue(smooth_dist < dist)
|
||||
|
||||
def test_norm_laplacian(self):
|
||||
V = 32
|
||||
F = 64
|
||||
device = get_random_cuda_device()
|
||||
# random vertices
|
||||
verts = torch.rand((V, 3), dtype=torch.float32, device=device)
|
||||
# random valid faces (no self circles, e.g. (v0, v0, v1))
|
||||
faces = torch.stack([torch.randperm(V) for f in range(F)], dim=0)[:, :3]
|
||||
faces = faces.to(device=device)
|
||||
mesh = Meshes(verts=[verts], faces=[faces])
|
||||
edges = mesh.edges_packed()
|
||||
|
||||
eps = 1e-12
|
||||
|
||||
L = norm_laplacian(verts, edges, eps=eps)
|
||||
|
||||
Lnaive = torch.zeros((V, V), dtype=torch.float32, device=device)
|
||||
for f in range(F):
|
||||
f0, f1, f2 = faces[f]
|
||||
v0 = verts[f0]
|
||||
v1 = verts[f1]
|
||||
v2 = verts[f2]
|
||||
|
||||
w12 = 1.0 / ((v1 - v2).norm() + eps)
|
||||
w02 = 1.0 / ((v0 - v2).norm() + eps)
|
||||
w01 = 1.0 / ((v0 - v1).norm() + eps)
|
||||
|
||||
Lnaive[f0, f1] = w01
|
||||
Lnaive[f1, f0] = w01
|
||||
Lnaive[f0, f2] = w02
|
||||
Lnaive[f2, f0] = w02
|
||||
Lnaive[f1, f2] = w12
|
||||
Lnaive[f2, f1] = w12
|
||||
|
||||
self.assertClose(L.to_dense(), Lnaive)
|
||||
|
||||
@@ -406,34 +406,6 @@ class TestMeshes(TestCaseMixin, unittest.TestCase):
|
||||
self.assertFalse(newv.requires_grad)
|
||||
self.assertClose(newv, v)
|
||||
|
||||
def test_laplacian_packed(self):
|
||||
def naive_laplacian_packed(meshes):
|
||||
verts_packed = meshes.verts_packed()
|
||||
edges_packed = meshes.edges_packed()
|
||||
V = verts_packed.shape[0]
|
||||
|
||||
L = torch.zeros((V, V), dtype=torch.float32, device=meshes.device)
|
||||
for e in edges_packed:
|
||||
L[e[0], e[1]] = 1
|
||||
# symetric
|
||||
L[e[1], e[0]] = 1
|
||||
|
||||
deg = L.sum(1).view(-1, 1)
|
||||
deg[deg > 0] = 1.0 / deg[deg > 0]
|
||||
L = L * deg
|
||||
diag = torch.eye(V, dtype=torch.float32, device=meshes.device)
|
||||
L.masked_fill_(diag > 0, -1)
|
||||
return L
|
||||
|
||||
# Note that we don't test with random meshes for this case, as the
|
||||
# definition of Laplacian is defined for simple graphs (aka valid meshes)
|
||||
meshes = init_simple_mesh("cuda:0")
|
||||
|
||||
lapl_naive = naive_laplacian_packed(meshes)
|
||||
lapl = meshes.laplacian_packed().to_dense()
|
||||
# check with naive
|
||||
self.assertClose(lapl, lapl_naive)
|
||||
|
||||
def test_offset_verts(self):
|
||||
def naive_offset_verts(mesh, vert_offsets_packed):
|
||||
# new Meshes class
|
||||
|
||||
Reference in New Issue
Block a user