mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-22 23:30:35 +08:00
refactor laplacian matrices
Summary: Refactor of all functions to compute laplacian matrices in one file. Support for: * Standard Laplacian * Cotangent Laplacian * Norm Laplacian Reviewed By: nikhilaravi Differential Revision: D29297466 fbshipit-source-id: b96b88915ce8ef0c2f5693ec9b179fd27b70abf9
This commit is contained in:
committed by
Facebook GitHub Bot
parent
da9974b416
commit
07a5a68d50
@@ -9,6 +9,7 @@ from .cubify import cubify
|
||||
from .graph_conv import GraphConv
|
||||
from .interp_face_attrs import interpolate_face_attributes
|
||||
from .knn import knn_gather, knn_points
|
||||
from .laplacian_matrices import laplacian, cot_laplacian, norm_laplacian
|
||||
from .mesh_face_areas_normals import mesh_face_areas_normals
|
||||
from .mesh_filtering import taubin_smoothing
|
||||
from .packed_to_padded import packed_to_padded, padded_to_packed
|
||||
|
||||
170
pytorch3d/ops/laplacian_matrices.py
Normal file
170
pytorch3d/ops/laplacian_matrices.py
Normal file
@@ -0,0 +1,170 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
|
||||
# ------------------------ Laplacian Matrices ------------------------ #
|
||||
# This file contains implementations of differentiable laplacian matrices.
|
||||
# These include
|
||||
# 1) Standard Laplacian matrix
|
||||
# 2) Cotangent Laplacian matrix
|
||||
# 3) Norm Laplacian matrix
|
||||
# -------------------------------------------------------------------- #
|
||||
|
||||
|
||||
def laplacian(verts: torch.Tensor, edges: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Computes the laplacian matrix.
|
||||
The definition of the laplacian is
|
||||
L[i, j] = -1 , if i == j
|
||||
L[i, j] = 1 / deg(i) , if (i, j) is an edge
|
||||
L[i, j] = 0 , otherwise
|
||||
where deg(i) is the degree of the i-th vertex in the graph.
|
||||
|
||||
Args:
|
||||
verts: tensor of shape (V, 3) containing the vertices of the graph
|
||||
edges: tensor of shape (E, 2) containing the vertex indices of each edge
|
||||
Returns:
|
||||
L: Sparse FloatTensor of shape (V, V)
|
||||
"""
|
||||
V = verts.shape[0]
|
||||
|
||||
e0, e1 = edges.unbind(1)
|
||||
|
||||
idx01 = torch.stack([e0, e1], dim=1) # (E, 2)
|
||||
idx10 = torch.stack([e1, e0], dim=1) # (E, 2)
|
||||
idx = torch.cat([idx01, idx10], dim=0).t() # (2, 2*E)
|
||||
|
||||
# First, we construct the adjacency matrix,
|
||||
# i.e. A[i, j] = 1 if (i,j) is an edge, or
|
||||
# A[e0, e1] = 1 & A[e1, e0] = 1
|
||||
ones = torch.ones(idx.shape[1], dtype=torch.float32, device=verts.device)
|
||||
A = torch.sparse.FloatTensor(idx, ones, (V, V))
|
||||
|
||||
# the sum of i-th row of A gives the degree of the i-th vertex
|
||||
deg = torch.sparse.sum(A, dim=1).to_dense()
|
||||
|
||||
# We construct the Laplacian matrix by adding the non diagonal values
|
||||
# i.e. L[i, j] = 1 ./ deg(i) if (i, j) is an edge
|
||||
deg0 = deg[e0]
|
||||
deg0 = torch.where(deg0 > 0.0, 1.0 / deg0, deg0)
|
||||
deg1 = deg[e1]
|
||||
deg1 = torch.where(deg1 > 0.0, 1.0 / deg1, deg1)
|
||||
val = torch.cat([deg0, deg1])
|
||||
L = torch.sparse.FloatTensor(idx, val, (V, V))
|
||||
|
||||
# Then we add the diagonal values L[i, i] = -1.
|
||||
idx = torch.arange(V, device=verts.device)
|
||||
idx = torch.stack([idx, idx], dim=0)
|
||||
ones = torch.ones(idx.shape[1], dtype=torch.float32, device=verts.device)
|
||||
L -= torch.sparse.FloatTensor(idx, ones, (V, V))
|
||||
|
||||
return L
|
||||
|
||||
|
||||
def cot_laplacian(
|
||||
verts: torch.Tensor, faces: torch.Tensor, eps: float = 1e-12
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Returns the Laplacian matrix with cotangent weights and the inverse of the
|
||||
face areas.
|
||||
|
||||
Args:
|
||||
verts: tensor of shape (V, 3) containing the vertices of the graph
|
||||
faces: tensor of shape (F, 3) containing the vertex indices of each face
|
||||
Returns:
|
||||
2-element tuple containing
|
||||
- **L**: Sparse FloatTensor of shape (V,V) for the Laplacian matrix.
|
||||
Here, L[i, j] = cot a_ij + cot b_ij iff (i, j) is an edge in meshes.
|
||||
See the description above for more clarity.
|
||||
- **inv_areas**: FloatTensor of shape (V,) containing the inverse of sum of
|
||||
face areas containing each vertex
|
||||
"""
|
||||
V, F = verts.shape[0], faces.shape[0]
|
||||
|
||||
face_verts = verts[faces]
|
||||
v0, v1, v2 = face_verts[:, 0], face_verts[:, 1], face_verts[:, 2]
|
||||
|
||||
# Side lengths of each triangle, of shape (sum(F_n),)
|
||||
# A is the side opposite v1, B is opposite v2, and C is opposite v3
|
||||
A = (v1 - v2).norm(dim=1)
|
||||
B = (v0 - v2).norm(dim=1)
|
||||
C = (v0 - v1).norm(dim=1)
|
||||
|
||||
# Area of each triangle (with Heron's formula); shape is (sum(F_n),)
|
||||
s = 0.5 * (A + B + C)
|
||||
# note that the area can be negative (close to 0) causing nans after sqrt()
|
||||
# we clip it to a small positive value
|
||||
area = (s * (s - A) * (s - B) * (s - C)).clamp_(min=eps).sqrt()
|
||||
|
||||
# Compute cotangents of angles, of shape (sum(F_n), 3)
|
||||
A2, B2, C2 = A * A, B * B, C * C
|
||||
cota = (B2 + C2 - A2) / area
|
||||
cotb = (A2 + C2 - B2) / area
|
||||
cotc = (A2 + B2 - C2) / area
|
||||
cot = torch.stack([cota, cotb, cotc], dim=1)
|
||||
cot /= 4.0
|
||||
|
||||
# Construct a sparse matrix by basically doing:
|
||||
# L[v1, v2] = cota
|
||||
# L[v2, v0] = cotb
|
||||
# L[v0, v1] = cotc
|
||||
ii = faces[:, [1, 2, 0]]
|
||||
jj = faces[:, [2, 0, 1]]
|
||||
idx = torch.stack([ii, jj], dim=0).view(2, F * 3)
|
||||
L = torch.sparse.FloatTensor(idx, cot.view(-1), (V, V))
|
||||
|
||||
# Make it symmetric; this means we are also setting
|
||||
# L[v2, v1] = cota
|
||||
# L[v0, v2] = cotb
|
||||
# L[v1, v0] = cotc
|
||||
L += L.t()
|
||||
|
||||
# For each vertex, compute the sum of areas for triangles containing it.
|
||||
idx = faces.view(-1)
|
||||
inv_areas = torch.zeros(V, dtype=torch.float32, device=verts.device)
|
||||
val = torch.stack([area] * 3, dim=1).view(-1)
|
||||
inv_areas.scatter_add_(0, idx, val)
|
||||
idx = inv_areas > 0
|
||||
inv_areas[idx] = 1.0 / inv_areas[idx]
|
||||
inv_areas = inv_areas.view(-1, 1)
|
||||
|
||||
return L, inv_areas
|
||||
|
||||
|
||||
def norm_laplacian(
|
||||
verts: torch.Tensor, edges: torch.Tensor, eps: float = 1e-12
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Norm laplacian computes a variant of the laplacian matrix which weights each
|
||||
affinity with the normalized distance of the neighboring nodes.
|
||||
More concretely,
|
||||
L[i, j] = 1. / wij where wij = ||vi - vj|| if (vi, vj) are neighboring nodes
|
||||
|
||||
Args:
|
||||
verts: tensor of shape (V, 3) containing the vertices of the graph
|
||||
edges: tensor of shape (E, 2) containing the vertex indices of each edge
|
||||
Returns:
|
||||
L: Sparse FloatTensor of shape (V, V)
|
||||
"""
|
||||
edge_verts = verts[edges] # (E, 2, 3)
|
||||
v0, v1 = edge_verts[:, 0], edge_verts[:, 1]
|
||||
|
||||
# Side lengths of each edge, of shape (E,)
|
||||
w01 = 1.0 / ((v0 - v1).norm(dim=1) + eps)
|
||||
|
||||
# Construct a sparse matrix by basically doing:
|
||||
# L[v0, v1] = w01
|
||||
# L[v1, v0] = w01
|
||||
e01 = edges.t() # (2, E)
|
||||
|
||||
V = verts.shape[0]
|
||||
L = torch.sparse.FloatTensor(e01, w01, (V, V))
|
||||
L = L + L.t()
|
||||
|
||||
return L
|
||||
@@ -5,6 +5,7 @@
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import torch
|
||||
from pytorch3d.ops import norm_laplacian
|
||||
from pytorch3d.structures import Meshes, utils as struct_utils
|
||||
|
||||
|
||||
@@ -19,35 +20,6 @@ from pytorch3d.structures import Meshes, utils as struct_utils
|
||||
# ----------------------- Taubin Smoothing ----------------------- #
|
||||
|
||||
|
||||
def norm_laplacian(verts: torch.Tensor, edges: torch.Tensor, eps: float = 1e-12):
|
||||
"""
|
||||
Norm laplacian computes a variant of the laplacian matrix which weights each
|
||||
affinity with the normalized distance of the neighboring nodes.
|
||||
More concretely,
|
||||
L[i, j] = 1. / wij where wij = ||vi - vj|| if (vi, vj) are neighboring nodes
|
||||
|
||||
Args:
|
||||
verts: tensor of shape (V, 3) containing the vertices of the graph
|
||||
edges: tensor of shape (E, 2) containing the vertex indices of each edge
|
||||
"""
|
||||
edge_verts = verts[edges] # (E, 2, 3)
|
||||
v0, v1 = edge_verts[:, 0], edge_verts[:, 1]
|
||||
|
||||
# Side lengths of each edge, of shape (E,)
|
||||
w01 = 1.0 / ((v0 - v1).norm(dim=1) + eps)
|
||||
|
||||
# Construct a sparse matrix by basically doing:
|
||||
# L[v0, v1] = w01
|
||||
# L[v1, v0] = w01
|
||||
e01 = edges.t() # (2, E)
|
||||
|
||||
V = verts.shape[0]
|
||||
L = torch.sparse.FloatTensor(e01, w01, (V, V))
|
||||
L = L + L.t()
|
||||
|
||||
return L
|
||||
|
||||
|
||||
def taubin_smoothing(
|
||||
meshes: Meshes, lambd: float = 0.53, mu: float = -0.53, num_iter: int = 10
|
||||
) -> Meshes:
|
||||
|
||||
Reference in New Issue
Block a user