594 lines
19 KiB
C
594 lines
19 KiB
C
#include <vmm.h>
|
||
#include <sync.h>
|
||
#include <string.h>
|
||
#include <assert.h>
|
||
#include <stdio.h>
|
||
#include <error.h>
|
||
#include <pmm.h>
|
||
#include <x86.h>
|
||
#include <swap.h>
|
||
#include <kmalloc.h>
|
||
|
||
/*
|
||
vmm design include two parts: mm_struct (mm) & vma_struct (vma)
|
||
mm is the memory manager for the set of continuous virtual memory
|
||
area which have the same PDT. vma is a continuous virtual memory area.
|
||
There a linear link list for vma & a redblack link list for vma in mm.
|
||
---------------
|
||
mm related functions:
|
||
golbal functions
|
||
struct mm_struct * mm_create(void)
|
||
void mm_destroy(struct mm_struct *mm)
|
||
int do_pgfault(struct mm_struct *mm, uint32_t error_code, uintptr_t addr)
|
||
--------------
|
||
vma related functions:
|
||
global functions
|
||
struct vma_struct * vma_create (uintptr_t vm_start, uintptr_t vm_end,...)
|
||
void insert_vma_struct(struct mm_struct *mm, struct vma_struct *vma)
|
||
struct vma_struct * find_vma(struct mm_struct *mm, uintptr_t addr)
|
||
local functions
|
||
inline void check_vma_overlap(struct vma_struct *prev, struct vma_struct *next)
|
||
---------------
|
||
check correctness functions
|
||
void check_vmm(void);
|
||
void check_vma_struct(void);
|
||
void check_pgfault(void);
|
||
*/
|
||
|
||
static void check_vmm(void);
|
||
static void check_vma_struct(void);
|
||
static void check_pgfault(void);
|
||
|
||
// mm_create - alloc a mm_struct & initialize it.
|
||
struct mm_struct *
|
||
mm_create(void) {
|
||
struct mm_struct *mm = kmalloc(sizeof(struct mm_struct));
|
||
|
||
if (mm != NULL) {
|
||
list_init(&(mm->mmap_list));
|
||
mm->mmap_cache = NULL;
|
||
mm->pgdir = NULL;
|
||
mm->map_count = 0;
|
||
|
||
if (swap_init_ok) swap_init_mm(mm);
|
||
else mm->sm_priv = NULL;
|
||
|
||
set_mm_count(mm, 0);
|
||
sem_init(&(mm->mm_sem), 1);
|
||
}
|
||
return mm;
|
||
}
|
||
|
||
// vma_create - alloc a vma_struct & initialize it. (addr range: vm_start~vm_end)
|
||
struct vma_struct *
|
||
vma_create(uintptr_t vm_start, uintptr_t vm_end, uint32_t vm_flags) {
|
||
struct vma_struct *vma = kmalloc(sizeof(struct vma_struct));
|
||
|
||
if (vma != NULL) {
|
||
vma->vm_start = vm_start;
|
||
vma->vm_end = vm_end;
|
||
vma->vm_flags = vm_flags;
|
||
}
|
||
return vma;
|
||
}
|
||
|
||
|
||
// find_vma - find a vma (vma->vm_start <= addr <= vma_vm_end)
|
||
struct vma_struct *
|
||
find_vma(struct mm_struct *mm, uintptr_t addr) {
|
||
struct vma_struct *vma = NULL;
|
||
if (mm != NULL) {
|
||
vma = mm->mmap_cache;
|
||
if (!(vma != NULL && vma->vm_start <= addr && vma->vm_end > addr)) {
|
||
bool found = 0;
|
||
list_entry_t *list = &(mm->mmap_list), *le = list;
|
||
while ((le = list_next(le)) != list) {
|
||
vma = le2vma(le, list_link);
|
||
if (vma->vm_start<=addr && addr < vma->vm_end) {
|
||
found = 1;
|
||
break;
|
||
}
|
||
}
|
||
if (!found) {
|
||
vma = NULL;
|
||
}
|
||
}
|
||
if (vma != NULL) {
|
||
mm->mmap_cache = vma;
|
||
}
|
||
}
|
||
return vma;
|
||
}
|
||
|
||
|
||
// check_vma_overlap - check if vma1 overlaps vma2 ?
|
||
static inline void
|
||
check_vma_overlap(struct vma_struct *prev, struct vma_struct *next) {
|
||
assert(prev->vm_start < prev->vm_end);
|
||
assert(prev->vm_end <= next->vm_start);
|
||
assert(next->vm_start < next->vm_end);
|
||
}
|
||
|
||
|
||
// insert_vma_struct -insert vma in mm's list link
|
||
void
|
||
insert_vma_struct(struct mm_struct *mm, struct vma_struct *vma) {
|
||
assert(vma->vm_start < vma->vm_end);
|
||
list_entry_t *list = &(mm->mmap_list);
|
||
list_entry_t *le_prev = list, *le_next;
|
||
|
||
list_entry_t *le = list;
|
||
while ((le = list_next(le)) != list) {
|
||
struct vma_struct *mmap_prev = le2vma(le, list_link);
|
||
if (mmap_prev->vm_start > vma->vm_start) {
|
||
break;
|
||
}
|
||
le_prev = le;
|
||
}
|
||
|
||
le_next = list_next(le_prev);
|
||
|
||
/* check overlap */
|
||
if (le_prev != list) {
|
||
check_vma_overlap(le2vma(le_prev, list_link), vma);
|
||
}
|
||
if (le_next != list) {
|
||
check_vma_overlap(vma, le2vma(le_next, list_link));
|
||
}
|
||
|
||
vma->vm_mm = mm;
|
||
list_add_after(le_prev, &(vma->list_link));
|
||
|
||
mm->map_count ++;
|
||
}
|
||
|
||
// mm_destroy - free mm and mm internal fields
|
||
void
|
||
mm_destroy(struct mm_struct *mm) {
|
||
assert(mm_count(mm) == 0);
|
||
|
||
list_entry_t *list = &(mm->mmap_list), *le;
|
||
while ((le = list_next(list)) != list) {
|
||
list_del(le);
|
||
kfree(le2vma(le, list_link)); //kfree vma
|
||
}
|
||
kfree(mm); //kfree mm
|
||
mm=NULL;
|
||
}
|
||
|
||
int
|
||
mm_map(struct mm_struct *mm, uintptr_t addr, size_t len, uint32_t vm_flags,
|
||
struct vma_struct **vma_store) {
|
||
uintptr_t start = ROUNDDOWN(addr, PGSIZE), end = ROUNDUP(addr + len, PGSIZE);
|
||
if (!USER_ACCESS(start, end)) {
|
||
return -E_INVAL;
|
||
}
|
||
|
||
assert(mm != NULL);
|
||
|
||
int ret = -E_INVAL;
|
||
|
||
struct vma_struct *vma;
|
||
if ((vma = find_vma(mm, start)) != NULL && end > vma->vm_start) {
|
||
goto out;
|
||
}
|
||
ret = -E_NO_MEM;
|
||
|
||
if ((vma = vma_create(start, end, vm_flags)) == NULL) {
|
||
goto out;
|
||
}
|
||
insert_vma_struct(mm, vma);
|
||
if (vma_store != NULL) {
|
||
*vma_store = vma;
|
||
}
|
||
ret = 0;
|
||
|
||
out:
|
||
return ret;
|
||
}
|
||
|
||
int
|
||
dup_mmap(struct mm_struct *to, struct mm_struct *from) {
|
||
assert(to != NULL && from != NULL);
|
||
list_entry_t *list = &(from->mmap_list), *le = list;
|
||
while ((le = list_prev(le)) != list) {
|
||
struct vma_struct *vma, *nvma;
|
||
vma = le2vma(le, list_link);
|
||
nvma = vma_create(vma->vm_start, vma->vm_end, vma->vm_flags);
|
||
if (nvma == NULL) {
|
||
return -E_NO_MEM;
|
||
}
|
||
|
||
insert_vma_struct(to, nvma);
|
||
|
||
bool share = 0;
|
||
if (copy_range(to->pgdir, from->pgdir, vma->vm_start, vma->vm_end, share) != 0) {
|
||
return -E_NO_MEM;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
exit_mmap(struct mm_struct *mm) {
|
||
assert(mm != NULL && mm_count(mm) == 0);
|
||
pde_t *pgdir = mm->pgdir;
|
||
list_entry_t *list = &(mm->mmap_list), *le = list;
|
||
while ((le = list_next(le)) != list) {
|
||
struct vma_struct *vma = le2vma(le, list_link);
|
||
unmap_range(pgdir, vma->vm_start, vma->vm_end);
|
||
}
|
||
while ((le = list_next(le)) != list) {
|
||
struct vma_struct *vma = le2vma(le, list_link);
|
||
exit_range(pgdir, vma->vm_start, vma->vm_end);
|
||
}
|
||
}
|
||
|
||
bool
|
||
copy_from_user(struct mm_struct *mm, void *dst, const void *src, size_t len, bool writable) {
|
||
if (!user_mem_check(mm, (uintptr_t)src, len, writable)) {
|
||
return 0;
|
||
}
|
||
memcpy(dst, src, len);
|
||
return 1;
|
||
}
|
||
|
||
bool
|
||
copy_to_user(struct mm_struct *mm, void *dst, const void *src, size_t len) {
|
||
if (!user_mem_check(mm, (uintptr_t)dst, len, 1)) {
|
||
return 0;
|
||
}
|
||
memcpy(dst, src, len);
|
||
return 1;
|
||
}
|
||
|
||
// vmm_init - initialize virtual memory management
|
||
// - now just call check_vmm to check correctness of vmm
|
||
void
|
||
vmm_init(void) {
|
||
check_vmm();
|
||
}
|
||
|
||
// check_vmm - check correctness of vmm
|
||
static void
|
||
check_vmm(void) {
|
||
size_t nr_free_pages_store = nr_free_pages();
|
||
|
||
check_vma_struct();
|
||
check_pgfault();
|
||
|
||
//assert(nr_free_pages_store == nr_free_pages());
|
||
|
||
cprintf("check_vmm() succeeded.\n");
|
||
}
|
||
|
||
static void
|
||
check_vma_struct(void) {
|
||
size_t nr_free_pages_store = nr_free_pages();
|
||
|
||
struct mm_struct *mm = mm_create();
|
||
assert(mm != NULL);
|
||
|
||
int step1 = 10, step2 = step1 * 10;
|
||
|
||
int i;
|
||
for (i = step1; i >= 1; i --) {
|
||
struct vma_struct *vma = vma_create(i * 5, i * 5 + 2, 0);
|
||
assert(vma != NULL);
|
||
insert_vma_struct(mm, vma);
|
||
}
|
||
|
||
for (i = step1 + 1; i <= step2; i ++) {
|
||
struct vma_struct *vma = vma_create(i * 5, i * 5 + 2, 0);
|
||
assert(vma != NULL);
|
||
insert_vma_struct(mm, vma);
|
||
}
|
||
|
||
list_entry_t *le = list_next(&(mm->mmap_list));
|
||
|
||
for (i = 1; i <= step2; i ++) {
|
||
assert(le != &(mm->mmap_list));
|
||
struct vma_struct *mmap = le2vma(le, list_link);
|
||
assert(mmap->vm_start == i * 5 && mmap->vm_end == i * 5 + 2);
|
||
le = list_next(le);
|
||
}
|
||
|
||
for (i = 5; i <= 5 * step2; i +=5) {
|
||
struct vma_struct *vma1 = find_vma(mm, i);
|
||
assert(vma1 != NULL);
|
||
struct vma_struct *vma2 = find_vma(mm, i+1);
|
||
assert(vma2 != NULL);
|
||
struct vma_struct *vma3 = find_vma(mm, i+2);
|
||
assert(vma3 == NULL);
|
||
struct vma_struct *vma4 = find_vma(mm, i+3);
|
||
assert(vma4 == NULL);
|
||
struct vma_struct *vma5 = find_vma(mm, i+4);
|
||
assert(vma5 == NULL);
|
||
|
||
assert(vma1->vm_start == i && vma1->vm_end == i + 2);
|
||
assert(vma2->vm_start == i && vma2->vm_end == i + 2);
|
||
}
|
||
|
||
for (i =4; i>=0; i--) {
|
||
struct vma_struct *vma_below_5= find_vma(mm,i);
|
||
if (vma_below_5 != NULL ) {
|
||
cprintf("vma_below_5: i %x, start %x, end %x\n",i, vma_below_5->vm_start, vma_below_5->vm_end);
|
||
}
|
||
assert(vma_below_5 == NULL);
|
||
}
|
||
|
||
mm_destroy(mm);
|
||
|
||
// assert(nr_free_pages_store == nr_free_pages());
|
||
|
||
cprintf("check_vma_struct() succeeded!\n");
|
||
}
|
||
|
||
struct mm_struct *check_mm_struct;
|
||
|
||
// check_pgfault - check correctness of pgfault handler
|
||
static void
|
||
check_pgfault(void) {
|
||
size_t nr_free_pages_store = nr_free_pages();
|
||
|
||
check_mm_struct = mm_create();
|
||
assert(check_mm_struct != NULL);
|
||
|
||
struct mm_struct *mm = check_mm_struct;
|
||
pde_t *pgdir = mm->pgdir = boot_pgdir;
|
||
assert(pgdir[0] == 0);
|
||
|
||
struct vma_struct *vma = vma_create(0, PTSIZE, VM_WRITE);
|
||
assert(vma != NULL);
|
||
|
||
insert_vma_struct(mm, vma);
|
||
|
||
uintptr_t addr = 0x100;
|
||
assert(find_vma(mm, addr) == vma);
|
||
|
||
int i, sum = 0;
|
||
for (i = 0; i < 100; i ++) {
|
||
*(char *)(addr + i) = i;
|
||
sum += i;
|
||
}
|
||
for (i = 0; i < 100; i ++) {
|
||
sum -= *(char *)(addr + i);
|
||
}
|
||
assert(sum == 0);
|
||
|
||
page_remove(pgdir, ROUNDDOWN(addr, PGSIZE));
|
||
free_page(pde2page(pgdir[0]));
|
||
pgdir[0] = 0;
|
||
|
||
mm->pgdir = NULL;
|
||
mm_destroy(mm);
|
||
check_mm_struct = NULL;
|
||
|
||
assert(nr_free_pages_store == nr_free_pages());
|
||
|
||
cprintf("check_pgfault() succeeded!\n");
|
||
}
|
||
//page fault number
|
||
volatile unsigned int pgfault_num=0;
|
||
|
||
/* do_pgfault - interrupt handler to process the page fault execption
|
||
* @mm : the control struct for a set of vma using the same PDT
|
||
* @error_code : the error code recorded in trapframe->tf_err which is setted by x86 hardware
|
||
* @addr : the addr which causes a memory access exception, (the contents of the CR2 register)
|
||
*
|
||
* CALL GRAPH: trap--> trap_dispatch-->pgfault_handler-->do_pgfault
|
||
* The processor provides ucore's do_pgfault function with two items of information to aid in diagnosing
|
||
* the exception and recovering from it.
|
||
* (1) The contents of the CR2 register. The processor loads the CR2 register with the
|
||
* 32-bit linear address that generated the exception. The do_pgfault fun can
|
||
* use this address to locate the corresponding page directory and page-table
|
||
* entries.
|
||
* (2) An error code on the kernel stack. The error code for a page fault has a format different from
|
||
* that for other exceptions. The error code tells the exception handler three things:
|
||
* -- The P flag (bit 0) indicates whether the exception was due to a not-present page (0)
|
||
* or to either an access rights violation or the use of a reserved bit (1).
|
||
* -- The W/R flag (bit 1) indicates whether the memory access that caused the exception
|
||
* was a read (0) or write (1).
|
||
* -- The U/S flag (bit 2) indicates whether the processor was executing at user mode (1)
|
||
* or supervisor mode (0) at the time of the exception.
|
||
*/
|
||
int
|
||
do_pgfault(struct mm_struct *mm, uint32_t error_code, uintptr_t addr) {
|
||
int ret = -E_INVAL;
|
||
//try to find a vma which include addr
|
||
struct vma_struct *vma = find_vma(mm, addr);
|
||
|
||
pgfault_num++;
|
||
//If the addr is in the range of a mm's vma?
|
||
if (vma == NULL || vma->vm_start > addr) {
|
||
cprintf("not valid addr %x, and can not find it in vma\n", addr);
|
||
goto failed;
|
||
}
|
||
//check the error_code
|
||
switch (error_code & 3) {
|
||
default:
|
||
/* error code flag : default is 3 ( W/R=1, P=1): write, present */
|
||
case 2: /* error code flag : (W/R=1, P=0): write, not present */
|
||
if (!(vma->vm_flags & VM_WRITE)) {
|
||
cprintf("do_pgfault failed: error code flag = write AND not present, but the addr's vma cannot write\n");
|
||
goto failed;
|
||
}
|
||
break;
|
||
case 1: /* error code flag : (W/R=0, P=1): read, present */
|
||
cprintf("do_pgfault failed: error code flag = read AND present\n");
|
||
goto failed;
|
||
case 0: /* error code flag : (W/R=0, P=0): read, not present */
|
||
if (!(vma->vm_flags & (VM_READ | VM_EXEC))) {
|
||
cprintf("do_pgfault failed: error code flag = read AND not present, but the addr's vma cannot read or exec\n");
|
||
goto failed;
|
||
}
|
||
}
|
||
/* IF (write an existed addr ) OR
|
||
* (write an non_existed addr && addr is writable) OR
|
||
* (read an non_existed addr && addr is readable)
|
||
* THEN
|
||
* continue process
|
||
*/
|
||
uint32_t perm = PTE_U;
|
||
if (vma->vm_flags & VM_WRITE) {
|
||
perm |= PTE_W;
|
||
}
|
||
addr = ROUNDDOWN(addr, PGSIZE);
|
||
|
||
ret = -E_NO_MEM;
|
||
|
||
pte_t *ptep=NULL;
|
||
/*LAB3 EXERCISE 1: YOUR CODE
|
||
* Maybe you want help comment, BELOW comments can help you finish the code
|
||
*
|
||
* Some Useful MACROs and DEFINEs, you can use them in below implementation.
|
||
* MACROs or Functions:
|
||
* get_pte : get an pte and return the kernel virtual address of this pte for la
|
||
* if the PT contians this pte didn't exist, alloc a page for PT (notice the 3th parameter '1')
|
||
* pgdir_alloc_page : call alloc_page & page_insert functions to allocate a page size memory & setup
|
||
* an addr map pa<--->la with linear address la and the PDT pgdir
|
||
* DEFINES:
|
||
* VM_WRITE : If vma->vm_flags & VM_WRITE == 1/0, then the vma is writable/non writable
|
||
* PTE_W 0x002 // page table/directory entry flags bit : Writeable
|
||
* PTE_U 0x004 // page table/directory entry flags bit : User can access
|
||
* VARIABLES:
|
||
* mm->pgdir : the PDT of these vma
|
||
*
|
||
*/
|
||
#if 0
|
||
/*LAB3 EXERCISE 1: YOUR CODE*/
|
||
ptep = ??? //(1) try to find a pte, if pte's PT(Page Table) isn't existed, then create a PT.
|
||
if (*ptep == 0) {
|
||
//(2) if the phy addr isn't exist, then alloc a page & map the phy addr with logical addr
|
||
|
||
}
|
||
else {
|
||
/*LAB3 EXERCISE 2: YOUR CODE
|
||
* Now we think this pte is a swap entry, we should load data from disk to a page with phy addr,
|
||
* and map the phy addr with logical addr, trigger swap manager to record the access situation of this page.
|
||
*
|
||
* Some Useful MACROs and DEFINEs, you can use them in below implementation.
|
||
* MACROs or Functions:
|
||
* swap_in(mm, addr, &page) : alloc a memory page, then according to the swap entry in PTE for addr,
|
||
* find the addr of disk page, read the content of disk page into this memroy page
|
||
* page_insert : build the map of phy addr of an Page with the linear addr la
|
||
* swap_map_swappable : set the page swappable
|
||
*/
|
||
/*
|
||
* LAB5 CHALLENGE ( the implmentation Copy on Write)
|
||
There are 2 situlations when code comes here.
|
||
1) *ptep & PTE_P == 1, it means one process try to write a readonly page.
|
||
If the vma includes this addr is writable, then we can set the page writable by rewrite the *ptep.
|
||
This method could be used to implement the Copy on Write (COW) thchnology(a fast fork process method).
|
||
2) *ptep & PTE_P == 0 & but *ptep!=0, it means this pte is a swap entry.
|
||
We should add the LAB3's results here.
|
||
*/
|
||
if(swap_init_ok) {
|
||
struct Page *page=NULL;
|
||
//(1)According to the mm AND addr, try to load the content of right disk page
|
||
// into the memory which page managed.
|
||
//(2) According to the mm, addr AND page, setup the map of phy addr <---> logical addr
|
||
//(3) make the page swappable.
|
||
//(4) [NOTICE]: you myabe need to update your lab3's implementation for LAB5's normal execution.
|
||
}
|
||
else {
|
||
cprintf("no swap_init_ok but ptep is %x, failed\n",*ptep);
|
||
goto failed;
|
||
}
|
||
}
|
||
#endif
|
||
// try to find a pte, if pte's PT(Page Table) isn't existed, then create a PT.
|
||
// (notice the 3th parameter '1')
|
||
if ((ptep = get_pte(mm->pgdir, addr, 1)) == NULL) {
|
||
cprintf("get_pte in do_pgfault failed\n");
|
||
goto failed;
|
||
}
|
||
|
||
if (*ptep == 0) { // if the phy addr isn't exist, then alloc a page & map the phy addr with logical addr
|
||
if (pgdir_alloc_page(mm->pgdir, addr, perm) == NULL) {
|
||
cprintf("pgdir_alloc_page in do_pgfault failed\n");
|
||
goto failed;
|
||
}
|
||
}
|
||
else {
|
||
struct Page *page=NULL;
|
||
cprintf("do pgfault: ptep %x, pte %x\n",ptep, *ptep);
|
||
if (*ptep & PTE_P) {
|
||
//if process write to this existed readonly page (PTE_P means existed), then should be here now.
|
||
//we can implement the delayed memory space copy for fork child process (AKA copy on write, COW).
|
||
//we didn't implement now, we will do it in future.
|
||
panic("error write a non-writable pte");
|
||
//page = pte2page(*ptep);
|
||
} else{
|
||
// if this pte is a swap entry, then load data from disk to a page with phy addr
|
||
// and call page_insert to map the phy addr with logical addr
|
||
if(swap_init_ok) {
|
||
if ((ret = swap_in(mm, addr, &page)) != 0) {
|
||
cprintf("swap_in in do_pgfault failed\n");
|
||
goto failed;
|
||
}
|
||
|
||
}
|
||
else {
|
||
cprintf("no swap_init_ok but ptep is %x, failed\n",*ptep);
|
||
goto failed;
|
||
}
|
||
}
|
||
page_insert(mm->pgdir, page, addr, perm);
|
||
swap_map_swappable(mm, addr, page, 1);
|
||
}
|
||
ret = 0;
|
||
failed:
|
||
return ret;
|
||
}
|
||
|
||
bool
|
||
user_mem_check(struct mm_struct *mm, uintptr_t addr, size_t len, bool write) {
|
||
if (mm != NULL) {
|
||
if (!USER_ACCESS(addr, addr + len)) {
|
||
return 0;
|
||
}
|
||
struct vma_struct *vma;
|
||
uintptr_t start = addr, end = addr + len;
|
||
while (start < end) {
|
||
if ((vma = find_vma(mm, start)) == NULL || start < vma->vm_start) {
|
||
return 0;
|
||
}
|
||
if (!(vma->vm_flags & ((write) ? VM_WRITE : VM_READ))) {
|
||
return 0;
|
||
}
|
||
if (write && (vma->vm_flags & VM_STACK)) {
|
||
if (start < vma->vm_start + PGSIZE) { //check stack start & size
|
||
return 0;
|
||
}
|
||
}
|
||
start = vma->vm_end;
|
||
}
|
||
return 1;
|
||
}
|
||
return KERN_ACCESS(addr, addr + len);
|
||
}
|
||
|
||
bool
|
||
copy_string(struct mm_struct *mm, char *dst, const char *src, size_t maxn) {
|
||
size_t alen, part = ROUNDDOWN((uintptr_t)src + PGSIZE, PGSIZE) - (uintptr_t)src;
|
||
while (1) {
|
||
if (part > maxn) {
|
||
part = maxn;
|
||
}
|
||
if (!user_mem_check(mm, (uintptr_t)src, part, 0)) {
|
||
return 0;
|
||
}
|
||
if ((alen = strnlen(src, part)) < part) {
|
||
memcpy(dst, src, alen + 1);
|
||
return 1;
|
||
}
|
||
if (part == maxn) {
|
||
return 0;
|
||
}
|
||
memcpy(dst, src, part);
|
||
dst += part, src += part, maxn -= part;
|
||
part = PGSIZE;
|
||
}
|
||
}
|