
1

Operating Systems

 Department of Computer Science & Technology
 Tsinghua University

 Lecture 12
 Inter-Process Communication and Deadlock

2

Outline

IPC
Π Overview

鐚 Communications Models
鐚 Direct&Indirect Communication
鐚 Blocking and Non-blocking
鐚 Buffer of Communication Link

Π Signal
Π Pipe
Π Message Queue
Π Shared Memory

Deadlocks
Π Deadlock Problem
Π System Model
Π Deadlock Characterization
Π Methods for Handling Deadlocks

Deadlock Prevention
Deadlock Avoidance
Deadlock Detection
Recovery from Deadlock

3

IPC Overview

Mechanism for processes to communicate and to
synchronize their actions
Processes communicate with each other without
resorting to shared variables
IPC facility provides two operations:

Π send(message) – message size fixed or variable
Π receive(message)

If P and Q wish to communicate, they need to:
Π establish a communication link between them
Π exchange messages via send/receive

Implementation of communication link
Π physical (e.g., shared memory, hardware bus)
Π logical (e.g., logical properties)

4

Communications Models

5

Implementation Questions

How are links established?
Can a link be associated with more than two
processes?
How many links can there be between every pair of
communicating processes?
What is the capacity of a link?
Is the size of a message that the link can
accommodate fixed or variable?
Is a link unidirectional or bi-directional?

6

Direct Communication

Processes must name each other explicitly:
Π send (P, message) – send a message to process P
Π receive(Q, message) – receive a message from process

Q

Properties of communication link
Π Links are established automatically
Π A link is associated with exactly one pair of

communicating processes
Π Between each pair there exists exactly one link
Π The link may be unidirectional, but is usually bi-

directional

7

Indirect Communication

Messages are directed and received from
message queues
ΠEach message queue has a unique id
ΠProcesses can communicate only if they share a

message queue
Properties of communication link
ΠLink established only if processes share a

common message queue
ΠA link may be associated with many processes
ΠEach pair of processes may share several

communication links
ΠLink may be unidirectional or bi-directional

8

Indirect Communication

Operations
Π create a new message queue
Π send and receive messages through message queue
Π destroy a message queue

Primitives are defined as:
send(A, message) – send a message to Queue A
receive(A, message) – receive a message from

Queue A

9

Indirect Communication

Message queue sharing
Π P1, P2, and P3 share message queue A
Π P1, sends; P2 and P3 receive
Π Who gets the message?

Solutions
Π Allow a link to be associated with at most two processes
Π Allow only one process at a time to execute a receive

operation
Π Allow the system to select arbitrarily the receiver. Sender is

notified who the receiver was.

10

Blocking and Non-blocking

Message passing may be either blocking or non-
blocking
Blocking is considered synchronous
Π Blocking send has the sender block until the message

is received
Π Blocking receive has the receiver block until a

message is available
Non-blocking is considered asynchronous
Π Non-blocking send has the sender send the message

and continue
Π Non-blocking receive has the receiver receive a valid

message or null

11

Buffering

Queue of messages attached to the link;
implemented in one of three ways
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)
2. Bounded capacity – finite length of n messages

Sender must wait if link full
3. Unbounded capacity – infinite length

Sender never waits

12

Outline

IPC
Π Overview
Π Signal

鐚 Signal Generation
鐚 Delivery
鐚 Signal API
鐚 Signal Example

Π Pipe
Π Message Queue
Π Shared Memory
Π Solaris Doors (opt)

Deadlocks
Π Deadlock Problem
Π System Model
Π Deadlock Characterization
Π Methods for Handling Deadlocks

Deadlock Prevention
Deadlock Avoidance
Deadlock Detection
Recovery from Deadlock

13

Signals

Signal
Π Software interrupt that notifies a process of an event
Π Examples: SIGFPE, SIGKILL, SIGUSR1, SIGSTOP, SIGCONT

What happens when a signal is received?
Π Catch: Specify signal handler to be called
Π Ignore: Rely on OS default action

鐚Example: Abort, memory dump, suspend or resume
process

Π Mask: Block signal so it is not delivered
鐚May be temporary (while handling signal of same

type)
Disadvantage

Π Does not specify any data to be exchanged

14

Signals

Divided into asynchronous (CTL-C) and synchronous
(illegal address)
Three phases to processing signals:

Π generation: event occurs requiring process notification
Π delivery: process recognizes and takes appropriate action
Π pending: between generation and delivery

15

Signals

Asynchronous signal:
Π ctrl-C
Π child process completes
Π alarm scheduled by the process expires

鐚 Unix: SIGALRM from alarm() or setitimer()
Π resource limit exceeded (disk quota, CPU time...)

Synchronous signal: programming errors, such as
invalid data, divide by zero

Π SIGTRAP: a condition arises that a debugger has requested
to be informed of.

Π SIGBUS: a bus error
Π SIGSEGV: an invalid memory reference, or segmentation

fault.
Π SIGFPE: an erroneous arithmetic operation

16

System call interface
{read(), write(), sigaltstack() … }kernel

scheduler I/O facilities filesystem

instruction set

(restartable system calls)

Process X

(Signal handles)

register handles

deliver signal

dispatch to handler

signal handler
stack

17

Signal Generation

Exceptions - kernel notifies process with signal
Other Process - using kill or sigsend.
Terminal interrupts - stty allows binding of signals to
specific keys, sent to foreground process
Job control - background processes attempt to read/write to
terminal. Process terminate or suspends, kernels sends
signal to parent
Quotas - exceeding limits
Notifications - event notification (device ready)
Alarms - process notified of alarm via signal reception

18

Delivery

Default actions
Π Abort: terminate process, generate core dump
Π Exit: terminate without generating core dump
Π Ignore: ignore signal
Π Stop: suspend process
Π Continue: resume process

User specified actions
Π Default action,
Π Ignore signal,
Π Catch signal - invoke user specified signal handler

User may not ignore, catch or block SIGKILL and
SIGSTOP
User may change action at any time
User may block signal

Π signal remains pending until unblocked

19

Signals API

Sending signals
Π kill(pid, signal)– system call to send signal to pid
Π raise(signal)– call to send signal to executing program/current

process

Signal handling
Π a signal handler can be invoked when a specific signal is

received
Π a process can deal with a signal in one of the following

ways:
鐚 default action
鐚 block the signal (some signals cannot be ignored)
鐚 catch the signal with a handler: signal(signal, void
(*func)())

鐙 e.g., to ignore a signal (not SIGKILL), use signal(sig_nr,
SIG_IGN)

鐙 write a function yourself - void func() {}

20

#include <stdio.h>
#include <signal.h>
void sigproc()
{
signal(SIGINT, sigproc); /* NOTE some versions of UNIX will reset

 * signal to default after each call. So for
 * portability reset signal each time */

printf(“you have pressed ctrl-c - disabled \n”);
}

void quitproc()
{

printf(“ctrl-\\ pressed to quit\n”); /* this is “ctrl” & “\” */
exit(0); /* normal exit status */

}

main()
{
signal(SIGINT, sigproc); /* DEFAULT ACTION: term */
signal(SIGQUIT, quitproc); /* DEFAULT ACTION: term */

printf(“ctrl-c disabled use ctrl-\\ to quit\n”);

for(;;);
}

Signal Example

21

Outline

IPC
Π Overview
Π Signal
Π Pipe

鐚 Pipe Size
鐚 Pipe Creation
鐚 Pipe Examples

Π Message Queue
Π Shared Memory
Π Solaris Doors (opt)

Deadlocks
Π Deadlock Problem
Π System Model
Π Deadlock Characterization
Π Methods for Handling Deadlocks

Deadlock Prevention
Deadlock Avoidance
Deadlock Detection
Recovery from Deadlock

22

Pipes

Process inherits file descriptors from parent
Π file descriptor 0 stdin, 1 stdout, 2 stderr

Process doesn't know (or care!) when reading
from keyboard, file, or process or writing to
terminal, file, or process
System calls:

Π read(fd, buffer, nbytes) (scanf() built on top)
Π write(fd, buffer, nbytes) (printf() built on top)
Π pipe(rgfd) creates a pipe

鐚rgfd array of 2 fd. Read from rgfd[0], write
to rgfd[1]

23

Classic IPC method under UNIX:
> ls -l | more

Π shell runs two processes ls and more which are linked via a pipe
Π the first process (ls) writes data (e.g., using write) to the pipe and

the second (more) reads data (e.g., using read) from the pipe
the system call pipe(fd[2])
creates one file descriptor for reading
(fd[0]) and one for writing (fd[1])
- allocates a temporary inode and a
memory page to hold data

Pipes

ls more

struct pipe_inode_info {
wait_queue_head_t wait;
char *base;
unsigned int len;
unsigned int start;
unsigned int readers, writers;
unsigned int waiting_readers, waiting_writers;
unsigned int r_counter, w_counter;

}

152

24

Pipes

One process writes, 2nd process reads
% ls | more

F shell:
1 create a pipe
2 create a process for ls command, setting
stdout to write side of pipe

3 create a process for more command, setting
stdin to read side of pipe

25

The Pipe

Bounded Buffer
Π shared buffer (Unix 4096K)
Π block writes to full pipe
Π block reads to empty pipe

b l a h . c \0

write fdread fd

26

Pipe Size

The size of a pipe is finite, i.e., only a certain amount of
bytes can remain in the pipe without being read
If a write is made on a pipe and there is enough space, then
the data is sent down the pipe and the call returns
immediately.
If, however, a write is made that will overfill the pipe,
process execution is suspended until room is made by
another process reading from the pipe.

27

Pipe Creation

First, a process creates a pipe, and then forks to create a
copy of itself.

28

Pipe Examples

Parent opens file, child reads file
Π parent closes read end of pipe
Π child closes write end of pipe

29

who | sort | lpr

who process writes to pipe1
sort process reads from pipe1, writes to pipe2
lpr process reads from pipe2

30

Pipe Example
#include <unistd.h>
#include <stdio.h>
char *msg = "hello";
main()
{
 char inbuf[MSGSIZE];
 int p[2];
 pid_t pid;
 /* open pipe */
 if (pipe(p) == -1) { perror("pipe call error"); exit(1); }

 switch(pid = fork()) {
 case -1: perror("error: fork call");
 exit(2);

 case 0: close(p[0]); /* close the read end of the pipe */
 write(p[1], msg, MSGSIZE);

 printf("Child: %s\n", msg);

 break;
 default: close(p[1]); /* close the write end of the pipe */

 read(p[0], inbuf, MSGSIZE);
 printf("Parent: %s\n", inbuf);

 wait(0);
 }
 exit(0);
}

31

Outline

IPC
Π Overview
Π Signal
Π Pipe
Π Message Queue
Π Shared Memory
Π Solaris Doors (opt)

Deadlocks
Π Deadlock Problem
Π System Model
Π Deadlock Characterization
Π Methods for Handling Deadlocks

Deadlock Prevention
Deadlock Avoidance
Deadlock Detection
Recovery from Deadlock

32

Message Queues

Message queues sorting messages according to FIFO
Π messages are stored as a sequence of bytes
Π system V IPC messages also have a type
Π get a message queue identifier: msgget (key, flags)
Π sending messages: msgsnd (Qid, buf, size, flags)
Π receiving messages: msgrcv (Qid, buf, size, type,
flags)

Π control a shared segment: msgctl(…)

33

Outline

IPC
Π Overview
Π Signal
Π Pipe
Π Message Queue
Π Shared Memory
Π Solaris Doors (opt)

Deadlocks
Π Deadlock Problem
Π System Model
Π Deadlock Characterization
Π Methods for Handling Deadlocks

Deadlock Prevention
Deadlock Avoidance
Deadlock Detection
Recovery from Deadlock

34

Shared Memory

Processes
Π Each process has private address space
Π Explicitly set up shared memory segment within each address

space

Threads
Π Always share address space (use heap for shared data)

Advantages
Π Fast and easy to share data

Disadvantages
Π Must synchronize data accesses;

35

the fastest method
write by a process can be seen by another process instantly
no syscall intervention
no data copying
no synchronization is provided

Π it is up to programmers’ responsibility

DRAM
addr space of

process I
addr space of

process J

main() {
 …
 attach();

main() {
 …
 attach();

page tbl page tbl

Shared Memory

36

Shared Memory

Shared memory is an efficient and fast way for processes to
communicate

Π multiple processes can attach a segment of physical memory to their
virtual address space

Π create a shared segment: shmget(key, size, flags)
Π attach a shared segment: shmat(shmid, *shmaddr, flags
)

Π detach a shared segment: shmdt(*shmaddr)
Π control a shared segment: shmctl(…)
Π if more than one process can access segment, an outside protocol or

mechanism (like semaphores) should enforce consistency/avoid
collisions

37

Programming Shared Memory

segment_id = shmget (key, size, IPC_CREAT | IPC_EXCL |
S_IRUSR | S_IWUSR);

Π a brand new segement is created if
鐚 key is IPC_PRIVATE or
鐚 IPC_CREAT is asserted
鐚 otherwise, segment_id of existing segment is returned

鐙 you have to know the “key”
Π size is rounded up to multiple of the page size
Π S_I*xxx

鐚 * for read/write
鐚 xxx for USR(owner) OTH(others) GRP(group)

Π IPC_EXCL
鐚 for segment creation(IPC_CREAT option), it guarantees the

key is unique (not existing one)

38

#define KEY ((key_t)(1234))
#define SEGSIZE sizeof(struct some_data_structure))

struct some_data_structure *ap;

int id = shmget(KEY, SEGSIZE, IPC_CREAT | 0666);
if (id < 0) error_rtn(id);

ap = (struct some_data_structure *) shmat(id, 0, 0);

#define KEY ((key_t)(1234))
#define SEGSIZE sizeof(struct some_data_structure))

struct some_data_structure *ap2;

int id = shmget(KEY, SEGSIZE, 0);
if (id < 0) error_rtn(id);

ap2 = (struct some_data_structure *) shmat(id, 0, 0);

let the system
choose the location

of the segment

0 for R/W
SHM_RDONLY

Program Example

39

Mapped File

ptr = mmap(/* map the file to ptr */
addr, /* suggest ptr valur. 0 means let system choose */
length, /* size of mapped region */
prot, /* access: PROT_READ | PROT_WRITE */
flags,/* mapping type: MAP_SHARED */
fd, /* file */
offset); /* location within the file */

fd can be a device
Π a device can be accessed without full blown device driver

operations are more familiar than shared memory
Π open, close, chmod, unlink, ….

40

Outline

IPC
Π Overview
Π Signal
Π Pipe
Π Message Queue
Π Shared Memory
Π Solaris Doors (opt)

Deadlocks
Π Deadlock Problem
Π System Model
Π Deadlock Characterization
Π Methods for Handling Deadlocks

Deadlock Prevention
Deadlock Avoidance
Deadlock Detection
Recovery from Deadlock

41

Objectives

To develop a description of deadlocks,
which prevent sets of concurrent processes
from completing their tasks
To present a number of different methods
for preventing or avoiding deadlocks in a
computer system.

42

Deadlock Problem

A set of blocked processes each holding a resource and
waiting to acquire a resource held by another process in the
set.
Example

Π System has 2 tape drives.
Π P1 and P2 each hold one tape drive and each needs another one.

Example
Π semaphores A and B, initialized to 1

 P0 P1

wait (A); wait(B)
wait (B); wait(A)

43

Bridge Crossing Example

Traffic only in one direction.
Each section of a bridge can be viewed as a resource.
If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback).
Several cars may have to be backed up if a deadlock occurs.
Starvation is possible.

44

45

Outline

IPC
Π Overview
Π Signal
Π Pipe
Π Message Queue
Π Shared Memory
Π Solaris Doors (opt)

Deadlocks
Π Deadlock Problem
Π System Model
Π Deadlock Characterization
Π Methods for Handling Deadlocks

Deadlock Prevention
Deadlock Avoidance
Deadlock Detection
Recovery from Deadlock

46

System Model

Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
Each resource type Ri has Wi instances.
Each process utilizes a resource as follows:

Πrequest
Πuse
Πrelease

47

48

49

Outline

IPC
Π Overview
Π Signal
Π Pipe
Π Message Queue
Π Shared Memory
Π Solaris Doors (opt)

Deadlocks
Π Deadlock Problem
Π System Model
Π Deadlock Characterization

鐚 Reusable Resources
鐚 Consumable Resources
鐚 Resource-Allocation Graph

Π Methods for Handling Deadlocks
 Deadlock Prevention
 Deadlock Avoidance
 Deadlock Detection
 Recovery from Deadlock

50

Deadlock Characterization

Mutual exclusion: only one process at a time can use a
resource.
Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes.
No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task.
Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes such that P0 is waiting for a resource that is held by
P1, P1 is waiting for a resource that is held by P2, …, Pn–1 is
waiting for a resource that is held by Pn, and Pn is waiting for a
resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

51

Reusable Resources

Used by only one process at a time and not
depleted by that use
Processes obtain resources that they later release
for reuse by other processes
Processors, I/O channels, main and secondary
memory, devices, and data structures such as files,
databases, and semaphores
Deadlock occurs if each process holds one
resource and requests the other

52

Example of Deadlock

Space is available for allocation of 200Kbytes, and
the following sequence of events occur

Deadlock occurs if both processes progress to
their second request

P1
. . .
. . .Request 80 Kbytes;

Request 60 Kbytes;

P2
. . .
. . .Request 70 Kbytes;

Request 80 Kbytes;

53

Consumable Resources

Created (produced) and destroyed (consumed)
Interrupts, signals, messages, and information in I/O
buffers
Deadlock may occur if a Receive message is blocking
May take a rare combination of events to cause
deadlock

54

Example of Deadlock

Deadlock occurs if receive is blocking

P1
. . .
. . .Receive(P2);

Send(P2, M1);

P2
. . .
. . .Receive(P1);

Send(P1, M2);

55

Resource-Allocation Graph

V is partitioned into two types:
Π P = {P1, P2, …, Pn}, the set consisting of all the processes in the

system.

Π R = {R1, R2, …, Rm}, the set consisting of all resource types in the
system.

request edge – directed edge Pi 鑒 Rj

assignment edge – directed edge Rj鑒 Pi

A set of vertices V and a set of edges E.

56

Resource-Allocation Graph (Cont.)

Process

Resource Type with 4 instances

Pi requests instance of Rj

Pi is holding an instance of Rj

Pi

Rj

Pi
Rj

57

Example of a Resource Allocation Graph

58

Resource Allocation Graph With A Deadlock

59

Resource Allocation Graph With A Cycle But No Deadlock

60

Basic Facts

If graph contains no cycles 钂 no deadlock.

If graph contains a cycle 钂
Π if only one instance per resource type, then deadlock.
Π if several instances per resource type, possibility of deadlock.

61

Outline

IPC
Π Overview
Π Signal
Π Pipe
Π Message Queue
Π Shared Memory
Π Solaris Doors (opt)

Deadlocks
Π Deadlock Problem
Π System Model
Π Deadlock Characterization
Π Methods for Handling Deadlocks

 Deadlock Prevention
 Deadlock Avoidance
 Deadlock Detection
 Recovery from Deadlock

62

Methods for Handling Deadlocks

Ensure that the system will never enter a deadlock state.

Allow the system to enter a deadlock state and then recover.

Ignore the problem and pretend that deadlocks never occur in
the system; used by most operating systems, including UNIX.

63

Deadlock Prevention

Mutual Exclusion– not required for sharable resources; must
hold for nonsharable resources.
Hold and Wait– must guarantee that whenever a process
requests a resource, it does not hold any other resources.

Π Require process to request and be allocated all its resources before it
begins execution, or allow process to request resources only when the
process has none.

Π Low resource utilization; starvation possible.

Restrain the ways request can be made.

64

Deadlock Prevention (Cont.)

No Preemption–
Π If a process that is holding some resources requests another

resource that cannot be immediately allocated to it, then all
resources currently being held are released.

Π Preempted resources are added to the list of resources for which
the process is waiting.

Π Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.

Circular Wait– impose a total ordering of all resource
types, and require that each process requests resources in
an increasing order of enumeration.

65

Deadlock Avoidance

Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need.
The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure that
there can never be a circular-wait condition.
Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

Requires that the system has some additional a priori
information available.

66

Safe State

When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.
System is in safe state if there exists a safe sequence of all
processes.
Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that
Pi can still request can be satisfied by currently available
resources + resources held by all the Pj, with j<i.

Π If Pi resource needs are not immediately available, then Pi can wait until all
Pj have finished.

Π When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate.

Π When Pi terminates, Pi+1 can obtain its needed resources, and so on.

67

Basic Facts

If a system is in safe state 钂 no deadlocks.

If a system is in unsafe state 钂 possibility of deadlock.

Avoidance 钂 ensure that a system will never enter an unsafe
state.

68

Safe, Unsafe , Deadlock State

69

Resource-Allocation Graph Algorithm

Claim edge Pi → Rj indicated that process Pj may request
resource Rj; represented by a dashed line.

Claim edge converts to request edge when a process
requests a resource.

When a resource is released by a process, assignment edge
reconverts to a claim edge.

Resources must be claimed a priori in the system.

70

Resource-Allocation Graph For Deadlock Avoidance

71

Unsafe State In Resource-Allocation Graph

72

Banker’s Algorithm

Multiple instances.

Each process must a priori claim maximum use.

When a process requests a resource it may have to
wait.

When a process gets all its resources it must return
them in a finite amount of time.

73

Available: Vector of length m. If available [j] = k, there are k
instances of resource type Rjavailable.
Max: n x m matrix. If Max [i,j] = k, then process Pimay request
at most k instances of resource type Rj.
Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj.

Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rjto complete its task.

Need [i,j] = Max[i,j] –Allocation [i,j].

Let n = number of processes, and m = number of resources types.

Data Structures for the Banker’s Algorithm

74

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available
Finish [i] = false for i – 1,2, …, n.

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi≤Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

Safety Algorithm

75

Request = request vector for process Pi. If Requesti[j] = k
then process Pi wants k instances of resource type Rj.
1. If Requesti≤ Needi go to step 2. Otherwise, raise error

condition, since process has exceeded its maximum claim.
2. If Requesti≤ Available, go to step 3. Otherwise Pi must wait,

since resources are not available.
3. Pretend to allocate requested resources to Pi by modifying the

state as follows:
Available = Available -Requesti;
Allocationi= Allocationi + Requesti;
Needi= Needi–Requesti;

l If safe , the resources are allocated to Pi.
l If unsafe, Pi must wait, and the old resource-allocation state is

restored

Resource-Request Algorithm for Process Pi

76

Determination of a Safe State
Initial State

77

Determination of a Safe State
P2 Runs to Completion

78

Determination of a Safe State
P1 Runs to Completion

79

Determination of a Safe State
P3 Runs to Completion

80

Determination of an Unsafe State

81

Determination of an Unsafe State

82

Deadlock Detection

Allow system to enter deadlock state

Detection algorithm

Recovery scheme

83

Maintain wait-for graph
Π Nodes are processes.
Π Pi→ Pj if Piis waiting for Pj.

Periodically invoke an algorithm that searches for a cycle in the
graph.

An algorithm to detect a cycle in a graph requires an order of n2
operations, where n is the number of vertices in the graph.

Single Instance of Each Resource Type

84

Resource-Allocation Graph Corresponding wait-for graph

Resource-Allocation Graph and Wait-for Graph

85

Several Instances of a Resource Type

Available: A vector of length m indicates the number of
available resources of each type.

Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each process.

Request: An n x m matrix indicates the current request of
each process. If Request [ij] = k, then process Pi is
requesting k more instances of resource type. Rj.

86

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:
(a) Work = Available
(b) For i = 1,2, …, n, if Allocationi鑝 0, then

Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:
(a) Finish[i] == false
(b) Requesti《= Work

If no such i exists, go to step 4.

87

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 ≤ i ≤ n, then the
system is in deadlock state. Moreover, if Finish[i] ==
false, then Pi is deadlocked.

Algorithm requires an order of O(m x n2) operations to detect
whether the system is in deadlocked state.

88

Example of Detection Algorithm

Five processes P0 through P4;three resource types
A (7 instances), B (2 instances), and C (6 instances).
Snapshot at time T0:

Allocation Request Available
A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all
i.

89

Example (Cont.)

P2 requests an additional instance of type C.
Request

A B C
P0 0 0 0
P1 2 0 1
P2 0 0 1
P3 1 0 0
P4 0 0 2

State of system?
Π Can reclaim resources held by process P0, but insufficient resources to fulfill

other processes; requests.
Π Deadlock exists, consisting of processes P1, P2, P3, and P4.

90

Detection-Algorithm Usage

When, and how often, to invoke depends on:
Π How often a deadlock is likely to occur?
Π How many processes will need to be rolled back?

鐚 one for each disjoint cycle

If detection algorithm is invoked arbitrarily, there
may be many cycles in the resource graph and so
we would not be able to tell which of the many
deadlocked processes “caused” the deadlock.

91

Abort all deadlocked processes.

Abort one process at a time until the deadlock cycle is
eliminated.

In which order should we choose to abort?
Π Priority of the process.
Π How long process has computed, and how much longer to completion.
Π Resources the process has used.
Π Resources process needs to complete.
Π How many processes will need to be terminated.
Π Is process interactive or batch?

Recovery from Deadlock: Process Termination

92

Recovery from Deadlock: Resource Preemption

Selecting a victim – minimize cost.

Rollback – return to some safe state, restart process for that
state.

Starvation – same process may always be picked as
victim, include number of rollback in cost factor.

