
1

Operating Systems

 Department of Computer Science & Technology
 Tsinghua University

Lecture 15: I/O Subsystem

2

Outline

Characteristics of I/O
 Types of Device Interfaces
 Synchronous and Asynchronous I/O

I/O Architecture
I/O Data Transferring
I/O Software Layers
Disk Scheduling
Disk Cache

3

Three Types of Device Interfaces

Three common types of device interfaces
 Character devices
 Block devices
 Network devices

Character Devices
 Example: keyboard/mouse, serial port, some USB devices
 Sequential access, single character at a time
 I/O commands: get(), put(), etc.
 Often use open file interface and semantics

4

Block Devices and Network Devices

Block Devices
 Example: disk drive, tape drive, DVD-ROM
 Uniform block I/O interface to access blocks of data
 Raw I/O or file-system access
 Memory-mapped file access possible

Network Devices
 Examples: Ethernet, wireless, bluetooth
 Different enough from block/character to have own interface
 Provide special networking interface for supporting various

network protocols
 For example, send/receive network packets

5

Synchronous and Asynchronous I/O

Blocking I/O: “Wait”
 When request data (e.g. read() system call), put process in waiting

state until data is ready
 When write data (e.g. write() system call), put process in waiting

state until device is ready for data

Non-blocking I/O: “Don’t Wait”
 Returns immediately from read or write request with count of bytes

successfully transferred
 Read may return nothing, write may write nothing

Asynchronous I/O: “Tell Me Later”
 When request data, take pointer to user’s buffer, return

immediately; later kernel fills buffer and notifies user
 When send data, take pointer to user’s buffer, return

immediately; later kernel takes data and notifies user

6

Synchronous and Asynchronous I/O

7

Outline

Characteristics of I/O
I/O Architecture
I/O Data Transferring
I/O Software Layers
Disk Scheduling
Disk Cache

8

I/O Architecture: A Modern Example

“Northbridge”
 Memory
 AGP/PCI-Express
 Built-in display

“Southbridge”
 ATA/IDE
 PCI bus
 USB/Firewire bus
 Serial/Parallel ports
 DMA controller
 Interrupt controller
 RTC, ACPI, BIOS, …

9

I/O Hardware

I/O controllers
 Interface between CPU and I/O devices
 Provides CPU with special instructions and registers

I/O addresses
 “Names” for CPU to control the I/O hardware
 Memory locations or port numbers

OS mechanism
 Use I/O instruction and I/O address to control a device
 3 types of interactions with I/O hardware: polling, interrupt-driven,

and DMA

10

Device Controller

read
write

control
status

Addressable
Memory
and/or
Queues

Registers
(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

How does CPU Actually Connect to Device?

CPU talks to a controller in
following two ways
 I/O instructions
 Memory mapped I/O

address+data

Interrupt Request
Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

CPU

Bus

11

I/O Instructions and Memory-Mapped I/O

I/O instructions
 Access device’s registers through I/O port numbers
 Special CPU instructions dealing with I/O
 Example from the Intel architecture: out 0x21,AL

Memory mapped I/O
 Device’s registers/memory appear in CPU’s physical address

space
 I/O accomplished with memory load/store instructions
 Mapped by MMU, addresses set by hardware jumpers or

programming at boot time
 Can be protected with page tables

12

Outline

Characteristics of I/O
I/O Architecture
I/O Data Transferring
I/O Software Layers
Disk Scheduling
Disk Cache

13

Transfering Data To/From Controller

Programmed I/O (PIO):
 Each byte transferred via processor in/out or load/store
 Pro: Simple hardware, easy to program
 Con: Consumes processor cycles proportional to data size
 For small/simple I/O

Direct Memory Access (DMA):
 Give controller access to memory bus
 Ask it to transfer data to/from memory directly
 Pro: device transfers data without burdening CPU
 Con: need setup
 For high throughput I/O

14

Steps of Disk Read in a DMA Transfer

15

I/O Device Notifying the OS

The OS needs to know when:
The I/O device has completed an operation
The I/O operation has encountered an error

Two methods
Polling
 Interrupt-driven

16

Polling

I/O device puts completion/error information in device-
specific status register
OS periodically checks the status register

Pro: simple
Con: may waste many cycles on polling if infrequent or
unpredictable I/O operations

17

Interrupt-Driven

CPU sets up interrupt handler vector before I/O
CPU issues I/O request and continues other tasks
I/O device processes the I/O request
I/O device triggers CPU interrupt-request line
Interrupt handler receives interrupts and dispatches to

correct handler

Pro: handles unpredictable events well
Con: interrupts relatively high overhead

Some devices may combine both polling and interrupt-
driven

 High-bandwidth network device example: interrupt for first
incoming packet, polling for following packets until hardware
empty

18

Interrupt-Driven I/O Cycle

19

Outline

Characteristics of I/O
I/O Architecture
I/O Data Transferring
I/O Software Layers
Disk Scheduling
Disk Cache

20

A Kernel I/O Structure

21

Device Drivers

Device-specific code in the kernel that interacts directly
with the device hardware
 Supports a standard internal interface
 Same kernel I/O system can interact easily with different device

drivers
 Special device-specific configuration supported with the ioctl()

system call

Device drivers typically divided into two pieces:
 Top half
 Bottom half

22

Top Half and Bottom Half

Device driver top half
 Accessed in call path from system calls
 Implements a set of standard, cross-device calls like open(),

close(), read(), write(), ioctl(), strategy()
 This is the kernel’s interface to the device driver
 Top half will start I/O to device, may put thread to sleep until

finished

Device driver bottom half
 Run as interrupt routine, often on special kernel stack
 Gets input or transfers next block of output
 May wake sleeping threads if I/O now complete

23

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

24

Outline

Characteristics of I/O
I/O Architecture
I/O Data Transferring
I/O Software Layers
Disk Scheduling
Disk Cache

25

Moving-head Disk Mechanism

26

Disk Performance Parameters

To read or write, the disk head must be positioned at the
desired track and at the beginning of the desired sector
Seek time
 Time it takes to position the head at the desired track

Rotational delay or rotational latency
 Time its takes for the beginning of the sector to reach the head

27

Timing of a Disk I/O Transfer

Figure 11.7 Timing of a Disk I/O Transfer

rN
b

r
TT sa 2

1

T

Ts = seek time
Tr = rotational delay
T = transfer time
b = number of bytes to be transferred
N = number of bytes on a track
r = rotation speed of the disk in revolutions per

second

28

Disk Performance Parameters

Access time
 Sum of seek time and rotational delay
 The time it takes to get in position to read or write

Data transfer occurs as the sector moves under the head

29

Disk Scheduling Policies

Seek time is the reason for differences in performance
For a single disk there will be a number of I/O requests
If requests are selected randomly, we will poor
performance

30

First-in, first-out (FIFO) ‏

Process request sequentially
Fair to all processes
Approaches random scheduling in performance if
there are many processes

31

FIFO - Example

Illustration shows total head movement of 640 cylinders.

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/diskschedulingfcfs.htm

32

Disk Scheduling Policies - Priority

Goal is not to optimize disk use but to meet other
objectives
Short batch jobs may have higher priority
Provide good interactive response time

33

Disk Scheduling Policies - Last-in, first-out

Good for transaction processing systems
 The device is given to the most recent user so there should be little

arm movement

Possibility of starvation since a job may never regain the
head of the line

34

Shortest Service Time First

Select the disk I/O request that requires the least
movement of the disk arm from its current
position
Always choose the minimum Seek time

35

Disk Scheduling Policies - SCAN

Arm moves in one direction only, satisfying all
outstanding requests until it reaches the last track in
that direction
Direction is reversed
Sometimes called the elevator algorithm

36

C-SCAN

Restricts scanning to one direction only
When the last track has been visited in one
direction, the arm is returned to the opposite end
of the disk and the scan begins again

37

C-LOOK

Version of C-SCAN
Arm only goes as far as the last request in each direction,
then reverses direction immediately, without first going all
the way to the end of the disk.

38

N-step-SCAN & FSCAN

N-step-SCAN
 Segments the disk request queue into subqueues of length N
 Subqueues are processed one at a time, using SCAN
 New requests added to other queue when queue is processed

FSCAN
 Two queues
 One queue is empty for new requests

39

Outline

Characteristics of I/O
I/O Architecture
I/O Data Transferring
I/O Software Layers
Disk Scheduling
Disk Cache

40

Disk Cache

Buffer in main memory for disk sectors
Contains a copy of some of the sectors on the disk

41

Least Recently Used

The block that has been in the cache the longest with no
reference to it is replaced
The cache consists of a stack of blocks
Most recently referenced block is on the top of the stack
When a block is referenced or brought into the cache, it is
placed on the top of the stack
The block on the bottom of the stack is removed when a
new block is brought in
Blocks don’t actually move around in main memory
A stack of pointers is used

42

Least Frequently Used

The block that has experienced the fewest references is
replaced
A counter is associated with each block
Counter is incremented each time block accessed
Block with smallest count is selected for replacement
Some blocks may be referenced many times in a short
period of time and the reference count is misleading

