338 lines
14 KiB
Markdown
338 lines
14 KiB
Markdown
|
|
|||
|
From:
|
|||
|
|
|||
|
- http://www.laurentluce.com/posts/python-threads-synchronization-locks-rlocks-semaphores-conditions-events-and-queues/
|
|||
|
- http://yoyzhou.github.io/blog/2013/02/28/python-threads-synchronization-locks/
|
|||
|
- http://blog.chinaunix.net/uid-429659-id-3186991.html
|
|||
|
- http://blog.csdn.net/yidangui/article/details/8707187
|
|||
|
- http://blog.csdn.net/yidangui/article/details/8707205
|
|||
|
- http://blog.csdn.net/yidangui/article/details/8707209
|
|||
|
- http://blog.csdn.net/yidangui/article/details/8707197
|
|||
|
|
|||
|
## threads: Python threads synchronization: Locks, RLocks, Semaphores, Conditions, Events and Queues.
|
|||
|
|
|||
|
### threading简介
|
|||
|
python是支持多线程的,并且是native的线程。主要是通过thread和threading这两个模块来实现的。
|
|||
|
|
|||
|
#### 实现模块
|
|||
|
- thread:多线程的底层支持模块,一般不建议使用;
|
|||
|
- threading:对thread进行了封装,将一些线程的操作对象化。
|
|||
|
|
|||
|
#### threading模块
|
|||
|
|
|||
|
- Timer与Thread类似,但要等待一段时间后才开始运行;
|
|||
|
- Lock 锁原语,这个我们可以对全局变量互斥时使用;
|
|||
|
- RLock 可重入锁,使单线程可以再次获得已经获得的锁;
|
|||
|
- Condition 条件变量,能让一个线程停下来,等待其他线程满足某个“条件”;
|
|||
|
- Event 通用的条件变量。多个线程可以等待某个事件发生,在事件发生后,所有的线程都被激活;
|
|||
|
- Semaphore为等待锁的线程提供一个类似“等候室”的结构;
|
|||
|
- BoundedSemaphore 与semaphore类似,但不允许超过初始值;
|
|||
|
- Queue:实现了多生产者(Producer)、多消费者(Consumer)的队列,支持锁原语,能够在多个线程之间提供很好的同步支持。
|
|||
|
|
|||
|
|
|||
|
thread是比较底层的模块,threading是对thread做了一些包装的,可以更加方便的被使用。创建thread的方式有:
|
|||
|
- 第一种方式:创建一个threading.Thread()的实例对象,给它一个函数。在它的初始化函数(__init__)中将可调用对象作为参数传入
|
|||
|
- 第二种方式:创建一个threading.Thread的实例,传给它一个可调用类对象,类中使用__call__()函数调用函数
|
|||
|
- 第三种方式:是通过继承Thread类,重写它的run方法;
|
|||
|
|
|||
|
第一种和第三种常用。
|
|||
|
|
|||
|
|
|||
|
|
|||
|
第一种方式举例:
|
|||
|
|
|||
|
```
|
|||
|
#coding=utf-8
|
|||
|
import threading
|
|||
|
|
|||
|
def thread_fun(num):
|
|||
|
for n in range(0, int(num)):
|
|||
|
print " I come from %s, num: %s" %( threading.currentThread().getName(), n)
|
|||
|
|
|||
|
def main(thread_num):
|
|||
|
thread_list = list();
|
|||
|
# 先创建线程对象
|
|||
|
for i in range(0, thread_num):
|
|||
|
thread_name = "thread_%s" %i
|
|||
|
thread_list.append(threading.Thread(target = thread_fun, name = thread_name, args = (20,)))
|
|||
|
|
|||
|
# 启动所有线程
|
|||
|
for thread in thread_list:
|
|||
|
thread.start()
|
|||
|
|
|||
|
# 主线程中等待所有子线程退出
|
|||
|
for thread in thread_list:
|
|||
|
thread.join()
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
main(3)
|
|||
|
```
|
|||
|
|
|||
|
第三种方式举例1:
|
|||
|
```
|
|||
|
#!/usr/bin/env python
|
|||
|
import threading
|
|||
|
import time
|
|||
|
count=1
|
|||
|
|
|||
|
class KissThread(threading.Thread):
|
|||
|
def run(self):
|
|||
|
global count
|
|||
|
print "Thread # %s:Pretending to do stuff" % count
|
|||
|
count+=1
|
|||
|
time.sleep(2)
|
|||
|
print "done with stuff"
|
|||
|
|
|||
|
|
|||
|
for t in range(5):
|
|||
|
KissThread().start()
|
|||
|
```
|
|||
|
第三种方式举例2:
|
|||
|
```
|
|||
|
import threading
|
|||
|
|
|||
|
class MyThread(threading.Thread):
|
|||
|
def __init__(self):
|
|||
|
threading.Thread.__init__(self)
|
|||
|
|
|||
|
def run(self):
|
|||
|
print "I am %s" % (self.name)
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
for i in range(0, 5):
|
|||
|
my_thread = MyThread()
|
|||
|
my_thread.start()
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### Thread类常用方法
|
|||
|
#### getName(self)
|
|||
|
返回线程的名字
|
|||
|
#### setName方法
|
|||
|
可以指定每一个thread的name
|
|||
|
```
|
|||
|
def __init__(self):
|
|||
|
threading.Thread.__init__(self)
|
|||
|
self.setName("new" + self.name)
|
|||
|
```
|
|||
|
#### isAlive(self)
|
|||
|
布尔标志,表示这个线程是否还在运行中
|
|||
|
#### isDaemon(self)
|
|||
|
返回线程的daemon标志
|
|||
|
#### run(self)
|
|||
|
定义线程的功能函数
|
|||
|
#### start方法
|
|||
|
启动线程
|
|||
|
#### join方法
|
|||
|
join方法原型如下,这个方法是用来程序挂起,直到线程结束,如果给出timeout,则最多阻塞timeout秒
|
|||
|
```
|
|||
|
def join(self, timeout=None):
|
|||
|
```
|
|||
|
#### setDaemon方法
|
|||
|
当我们在程序运行中,执行一个主线程,如果主线程又创建一个子线程,主线程和子线程就分兵两路,当主线程完成想退出时,会检验子线程是否完成。如果子线程未完成,则主线程会等待子线程完成后再退出。但是有时候我们需要的是,只要主线程完成了,不管子线程是否完成,都要和主线程一起退出,这时就可以用setDaemon方法,并设置其参数为True。
|
|||
|
|
|||
|
|
|||
|
### Queue提供的类
|
|||
|
- Queue队列
|
|||
|
- LifoQueue后入先出(LIFO)队列
|
|||
|
- PriorityQueue 优先队列
|
|||
|
|
|||
|
### 互斥锁
|
|||
|
Python编程中,引入了对象互斥锁的概念,来保证共享数据操作的完整性。每个对象都对应于一个可称为" 互斥锁" 的标记,这个标记用来保证在任一时刻,只能有一个线程访问该对象。在Python中我们使用threading模块提供的Lock类。添加一个互斥锁变量mutex = threading.Lock(),然后在争夺资源的时候之前我们会先抢占这把锁mutex.acquire(),对资源使用完成之后我们在释放这把锁mutex.release()。
|
|||
|
|
|||
|
当一个线程调用Lock对象的acquire()方法获得锁时,这把锁就进入“locked”状态。因为每次只有一个线程可以获得锁,所以如果此时另一个线程试图获得这个锁,该线程就会变为同步阻塞状态。直到拥有锁的线程调用锁的release()方法释放锁之后,该锁进入“unlocked”状态。线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。
|
|||
|
|
|||
|
```
|
|||
|
import threading
|
|||
|
import time
|
|||
|
|
|||
|
counter = 0
|
|||
|
mutex = threading.Lock()
|
|||
|
|
|||
|
class MyThread(threading.Thread):
|
|||
|
def __init__(self):
|
|||
|
threading.Thread.__init__(self)
|
|||
|
|
|||
|
def run(self):
|
|||
|
global counter, mutex
|
|||
|
time.sleep(1);
|
|||
|
if mutex.acquire():
|
|||
|
counter += 1
|
|||
|
print "I am %s, set counter:%s" % (self.name, counter)
|
|||
|
mutex.release()
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
for i in range(0, 100):
|
|||
|
my_thread = MyThread()
|
|||
|
my_thread.start()
|
|||
|
```
|
|||
|
|
|||
|
### Condition条件变量
|
|||
|
Python提供的Condition对象提供了对复杂线程同步问题的支持。Condition被称为条件变量,除了提供与Lock类似的acquire和release方法外,还提供了wait和notify方法。使用Condition的主要方式为:线程首先acquire一个条件变量,然后判断一些条件。如果条件不满足则wait;如果条件满足,进行一些处理改变条件后,通过notify方法通知其他线程,其他处于wait状态的线程接到通知后会重新判断条件。不断的重复这一过程,从而解决复杂的同步问题。
|
|||
|
|
|||
|
另外:Condition对象的构造函数可以接受一个Lock/RLock对象作为参数,如果没有指定,则Condition对象会在内部自行创建一个RLock;除了notify方法外,Condition对象还提供了notifyAll方法,可以通知waiting池中的所有线程尝试acquire内部锁。由于上述机制,处于waiting状态的线程只能通过notify方法唤醒,所以notifyAll的作用在于防止有线程永远处于沉默状态。
|
|||
|
|
|||
|
#### “生产者-消费者”模型
|
|||
|
代码中主要实现了生产者和消费者线程,双方将会围绕products来产生同步问题,首先是2个生成者生产products ,而接下来的4个消费者将会消耗products.
|
|||
|
|
|||
|
|
|||
|
实现举例:
|
|||
|
```
|
|||
|
#coding=utf-8
|
|||
|
#!/usr/bin/env python
|
|||
|
|
|||
|
import threading
|
|||
|
import time
|
|||
|
|
|||
|
condition = threading.Condition()
|
|||
|
products = 0
|
|||
|
|
|||
|
class Producer(threading.Thread):
|
|||
|
def __init__(self):
|
|||
|
threading.Thread.__init__(self)
|
|||
|
|
|||
|
def run(self):
|
|||
|
global condition, products
|
|||
|
while True:
|
|||
|
if condition.acquire():
|
|||
|
if products < 10:
|
|||
|
products += 1;
|
|||
|
print "Producer(%s):deliver one, now products:%s" %(self.name, products)
|
|||
|
condition.notify()
|
|||
|
else:
|
|||
|
print "Producer(%s):already 10, stop deliver, now products:%s" %(self.name, products)
|
|||
|
condition.wait();
|
|||
|
condition.release()
|
|||
|
time.sleep(1)
|
|||
|
|
|||
|
class Consumer(threading.Thread):
|
|||
|
def __init__(self):
|
|||
|
threading.Thread.__init__(self)
|
|||
|
|
|||
|
def run(self):
|
|||
|
global condition, products
|
|||
|
while True:
|
|||
|
if condition.acquire():
|
|||
|
if products > 1:
|
|||
|
products -= 1
|
|||
|
print "Consumer(%s):consume one, now products:%s" %(self.name, products)
|
|||
|
condition.notify()
|
|||
|
else:
|
|||
|
print "Consumer(%s):only 1, stop consume, products:%s" %(self.name, products)
|
|||
|
condition.wait();
|
|||
|
condition.release()
|
|||
|
time.sleep(2)
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
for p in range(0, 2):
|
|||
|
p = Producer()
|
|||
|
p.start()
|
|||
|
|
|||
|
for c in range(0, 4):
|
|||
|
c = Consumer()
|
|||
|
c.start()
|
|||
|
```
|
|||
|
### 信号量semaphore
|
|||
|
semaphore是一个变量,控制着对公共资源或者临界区的访问。信号量维护着一个计数器,指定可同时访问资源或者进入临界区的线程数。每次有一个线程获得信号量时,计数器-1。若计数器为0,其他线程就停止访问信号量,直到另一个线程释放信号量。
|
|||
|
|
|||
|
```
|
|||
|
#coding=utf-8
|
|||
|
import threading
|
|||
|
import random
|
|||
|
import time
|
|||
|
|
|||
|
class SemaphoreThread(threading.Thread):
|
|||
|
"""class using semaphore"""
|
|||
|
|
|||
|
availableTables=['A','B','C','D','E']
|
|||
|
|
|||
|
def __init__(self,threadName,semaphore):
|
|||
|
"""initialize thread"""
|
|||
|
|
|||
|
threading.Thread.__init__(self,name=threadName)
|
|||
|
self.sleepTime=random.randrange(1,6)
|
|||
|
#set the semaphore as a data attribute of the class
|
|||
|
self.threadSemaphore=semaphore
|
|||
|
def run(self):
|
|||
|
"""Print message and release semaphore"""
|
|||
|
|
|||
|
#acquire the semaphore
|
|||
|
self.threadSemaphore.acquire()
|
|||
|
#remove a table from the list
|
|||
|
table=SemaphoreThread.availableTables.pop()
|
|||
|
print "%s entered;seated at table %s." %(self.getName(),table),
|
|||
|
print SemaphoreThread.availableTables
|
|||
|
time.sleep(self.sleepTime)
|
|||
|
#free a table
|
|||
|
print " %s exiting;freeing table %s." %(self.getName(),table),
|
|||
|
SemaphoreThread.availableTables.append(table)
|
|||
|
print SemaphoreThread.availableTables
|
|||
|
#release the semaphore after execution finishes
|
|||
|
self.threadSemaphore.release()
|
|||
|
|
|||
|
threads=[] #list of threads
|
|||
|
#semaphore allows five threads to enter critical section
|
|||
|
threadSemaphore=threading.Semaphore(len(SemaphoreThread.availableTables))
|
|||
|
#创建一个threading.Semaphore对象,他最多允许5个线程访问临界区。
|
|||
|
#Semaphore类的一个对象用计数器跟踪获取和释放信号量的线程数量。
|
|||
|
#create ten threads
|
|||
|
for i in range(1,11):
|
|||
|
threads.append(SemaphoreThread("thread"+str(i),threadSemaphore))
|
|||
|
#创建一个列表,该列表由SemaphoreThread对象构成,start方法开始列表中的每个线程
|
|||
|
#start each thread
|
|||
|
for thread in threads:
|
|||
|
thread.start()
|
|||
|
```
|
|||
|
SemaphoreThread类的每个对象代表饭馆里的一个客人。类属性availableTables跟踪饭馆中可用的桌子。
|
|||
|
信号量有个内建的计数器,用于跟踪他的acquire和release方法调用的次数。内部计数器的初始值可作为参数传给Semaphore构造函数。默认值为1.计数器大于0,Semaphore的acquire方法就为线程获得信号量,并计数器自减。
|
|||
|
|
|||
|
|
|||
|
### 死锁现象
|
|||
|
所谓死锁: 是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。 由于资源占用是互斥的,当某个进程提出申请资源后,使得有关进程在无外力协助下,永远分配不到必需的资源而无法继续运行,这就产生了一种特殊现象死锁。
|
|||
|
```
|
|||
|
import threading
|
|||
|
|
|||
|
counterA = 0
|
|||
|
counterB = 0
|
|||
|
|
|||
|
mutexA = threading.Lock()
|
|||
|
mutexB = threading.Lock()
|
|||
|
|
|||
|
class MyThread(threading.Thread):
|
|||
|
def __init__(self):
|
|||
|
threading.Thread.__init__(self)
|
|||
|
|
|||
|
def run(self):
|
|||
|
self.fun1()
|
|||
|
self.fun2()
|
|||
|
|
|||
|
def fun1(self):
|
|||
|
global mutexA, mutexB
|
|||
|
if mutexA.acquire():
|
|||
|
print "I am %s , get res: %s" %(self.name, "ResA")
|
|||
|
|
|||
|
if mutexB.acquire():
|
|||
|
print "I am %s , get res: %s" %(self.name, "ResB")
|
|||
|
mutexB.release()
|
|||
|
|
|||
|
mutexA.release()
|
|||
|
|
|||
|
def fun2(self):
|
|||
|
global mutexA, mutexB
|
|||
|
if mutexB.acquire():
|
|||
|
print "I am %s , get res: %s" %(self.name, "ResB")
|
|||
|
|
|||
|
if mutexA.acquire():
|
|||
|
print "I am %s , get res: %s" %(self.name, "ResA")
|
|||
|
mutexA.release()
|
|||
|
|
|||
|
mutexB.release()
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
for i in range(0, 100):
|
|||
|
my_thread = MyThread()
|
|||
|
my_thread.start()
|
|||
|
```
|