os_kernel_lab/code/lab6/kern/mm/swap.c

285 lines
7.6 KiB
C
Raw Normal View History

2012-08-22 12:32:13 +08:00
#include <swap.h>
#include <swapfs.h>
#include <swap_fifo.h>
#include <stdio.h>
#include <string.h>
#include <memlayout.h>
#include <pmm.h>
#include <mmu.h>
#include <default_pmm.h>
#include <kdebug.h>
// the valid vaddr for check is between 0~CHECK_VALID_VADDR-1
#define CHECK_VALID_VIR_PAGE_NUM 5
#define BEING_CHECK_VALID_VADDR 0X1000
#define CHECK_VALID_VADDR (CHECK_VALID_VIR_PAGE_NUM+1)*0x1000
// the max number of valid physical page for check
#define CHECK_VALID_PHY_PAGE_NUM 4
// the max access seq number
#define MAX_SEQ_NO 10
static struct swap_manager *sm;
size_t max_swap_offset;
volatile int swap_init_ok = 0;
unsigned int swap_page[CHECK_VALID_VIR_PAGE_NUM];
unsigned int swap_in_seq_no[MAX_SEQ_NO],swap_out_seq_no[MAX_SEQ_NO];
static void check_swap(void);
int
swap_init(void)
{
swapfs_init();
if (!(1024 <= max_swap_offset && max_swap_offset < MAX_SWAP_OFFSET_LIMIT))
{
panic("bad max_swap_offset %08x.\n", max_swap_offset);
}
sm = &swap_manager_fifo;
int r = sm->init();
if (r == 0)
{
swap_init_ok = 1;
cprintf("SWAP: manager = %s\n", sm->name);
check_swap();
}
return r;
}
int
swap_init_mm(struct mm_struct *mm)
{
return sm->init_mm(mm);
}
int
swap_tick_event(struct mm_struct *mm)
{
return sm->tick_event(mm);
}
int
swap_map_swappable(struct mm_struct *mm, uintptr_t addr, struct Page *page, int swap_in)
{
return sm->map_swappable(mm, addr, page, swap_in);
}
int
swap_set_unswappable(struct mm_struct *mm, uintptr_t addr)
{
return sm->set_unswappable(mm, addr);
}
volatile unsigned int swap_out_num=0;
int
swap_out(struct mm_struct *mm, int n, int in_tick)
{
int i;
for (i = 0; i != n; ++ i)
{
uintptr_t v;
//struct Page **ptr_page=NULL;
struct Page *page;
// cprintf("i %d, SWAP: call swap_out_victim\n",i);
int r = sm->swap_out_victim(mm, &page, in_tick);
if (r != 0) {
cprintf("i %d, swap_out: call swap_out_victim failed\n",i);
break;
}
//assert(!PageReserved(page));
//cprintf("SWAP: choose victim page 0x%08x\n", page);
v=page->pra_vaddr;
pte_t *ptep = get_pte(mm->pgdir, v, 0);
assert((*ptep & PTE_P) != 0);
if (swapfs_write( (page->pra_vaddr/PGSIZE+1)<<8, page) != 0) {
cprintf("SWAP: failed to save\n");
sm->map_swappable(mm, v, page, 0);
continue;
}
else {
cprintf("swap_out: i %d, store page in vaddr 0x%x to disk swap entry %d\n", i, v, page->pra_vaddr/PGSIZE+1);
*ptep = (page->pra_vaddr/PGSIZE+1)<<8;
free_page(page);
}
tlb_invalidate(mm->pgdir, v);
}
return i;
}
int
swap_in(struct mm_struct *mm, uintptr_t addr, struct Page **ptr_result)
{
struct Page *result = alloc_page();
assert(result!=NULL);
pte_t *ptep = get_pte(mm->pgdir, addr, 0);
// cprintf("SWAP: load ptep %x swap entry %d to vaddr 0x%08x, page %x, No %d\n", ptep, (*ptep)>>8, addr, result, (result-pages));
int r;
if ((r = swapfs_read((*ptep), result)) != 0)
{
assert(r!=0);
}
cprintf("swap_in: load disk swap entry %d with swap_page in vadr 0x%x\n", (*ptep)>>8, addr);
*ptr_result=result;
return 0;
}
static inline void
check_content_set(void)
{
*(unsigned char *)0x1000 = 0x0a;
assert(pgfault_num==1);
*(unsigned char *)0x1010 = 0x0a;
assert(pgfault_num==1);
*(unsigned char *)0x2000 = 0x0b;
assert(pgfault_num==2);
*(unsigned char *)0x2010 = 0x0b;
assert(pgfault_num==2);
*(unsigned char *)0x3000 = 0x0c;
assert(pgfault_num==3);
*(unsigned char *)0x3010 = 0x0c;
assert(pgfault_num==3);
*(unsigned char *)0x4000 = 0x0d;
assert(pgfault_num==4);
*(unsigned char *)0x4010 = 0x0d;
assert(pgfault_num==4);
}
static inline int
check_content_access(void)
{
int ret = sm->check_swap();
return ret;
}
struct Page * check_rp[CHECK_VALID_PHY_PAGE_NUM];
pte_t * check_ptep[CHECK_VALID_PHY_PAGE_NUM];
unsigned int check_swap_addr[CHECK_VALID_VIR_PAGE_NUM];
extern free_area_t free_area;
#define free_list (free_area.free_list)
#define nr_free (free_area.nr_free)
static void
check_swap(void)
{
//backup mem env
int ret, count = 0, total = 0, i;
list_entry_t *le = &free_list;
while ((le = list_next(le)) != &free_list) {
struct Page *p = le2page(le, page_link);
//assert(PageProperty(p));
count ++, total += p->property;
}
assert(total == nr_free_pages());
cprintf("BEGIN check_swap: count %d, total %d\n",count,total);
//now we set the phy pages env
struct mm_struct *mm = mm_create();
assert(mm != NULL);
extern struct mm_struct *check_mm_struct;
assert(check_mm_struct == NULL);
check_mm_struct = mm;
pde_t *pgdir = mm->pgdir = boot_pgdir;
assert(pgdir[0] == 0);
struct vma_struct *vma = vma_create(BEING_CHECK_VALID_VADDR, CHECK_VALID_VADDR, VM_WRITE | VM_READ);
assert(vma != NULL);
insert_vma_struct(mm, vma);
//setup the temp Page Table vaddr 0~4MB
cprintf("setup Page Table for vaddr 0X1000, so alloc a page\n");
pte_t *temp_ptep=NULL;
temp_ptep = get_pte(mm->pgdir, BEING_CHECK_VALID_VADDR, 1);
assert(temp_ptep!= NULL);
cprintf("setup Page Table vaddr 0~4MB OVER!\n");
for (i=0;i<CHECK_VALID_PHY_PAGE_NUM;i++) {
check_rp[i] = alloc_page();
assert(check_rp[i] != NULL );
assert(!PageProperty(check_rp[i]));
}
list_entry_t free_list_store = free_list;
list_init(&free_list);
assert(list_empty(&free_list));
//assert(alloc_page() == NULL);
unsigned int nr_free_store = nr_free;
nr_free = 0;
for (i=0;i<CHECK_VALID_PHY_PAGE_NUM;i++) {
free_pages(check_rp[i],1);
}
assert(nr_free==CHECK_VALID_PHY_PAGE_NUM);
cprintf("set up init env for check_swap begin!\n");
//setup initial vir_page<->phy_page environment for page relpacement algorithm
pgfault_num=0;
check_content_set();
assert( nr_free == 0);
for(i = 0; i<MAX_SEQ_NO ; i++)
swap_out_seq_no[i]=swap_in_seq_no[i]=-1;
for (i= 0;i<CHECK_VALID_PHY_PAGE_NUM;i++) {
check_ptep[i]=0;
check_ptep[i] = get_pte(pgdir, (i+1)*0x1000, 0);
//cprintf("i %d, check_ptep addr %x, value %x\n", i, check_ptep[i], *check_ptep[i]);
assert(check_ptep[i] != NULL);
assert(pte2page(*check_ptep[i]) == check_rp[i]);
assert((*check_ptep[i] & PTE_P));
}
cprintf("set up init env for check_swap over!\n");
// now access the virt pages to test page relpacement algorithm
ret=check_content_access();
assert(ret==0);
//restore kernel mem env
for (i=0;i<CHECK_VALID_PHY_PAGE_NUM;i++) {
free_pages(check_rp[i],1);
}
//free_page(pte2page(*temp_ptep));
free_page(pa2page(pgdir[0]));
pgdir[0] = 0;
mm->pgdir = NULL;
mm_destroy(mm);
check_mm_struct = NULL;
nr_free = nr_free_store;
free_list = free_list_store;
le = &free_list;
while ((le = list_next(le)) != &free_list) {
struct Page *p = le2page(le, page_link);
count --, total -= p->property;
}
cprintf("count is %d, total is %d\n",count,total);
//assert(count == 0);
cprintf("check_swap() succeeded!\n");
}