168 lines
6.9 KiB
C++
168 lines
6.9 KiB
C++
//
|
||
// Created by 423A35C7 on 2023-12-15.
|
||
//
|
||
// 09:19
|
||
// 20:06
|
||
|
||
#include <algorithm>
|
||
#include <cassert>
|
||
#include <functional>
|
||
#include <iostream>
|
||
#include <memory>
|
||
#include <vector>
|
||
|
||
template<typename T>
|
||
class BiSortNode {
|
||
public:
|
||
using NodePtr = std::unique_ptr<BiSortNode>;
|
||
// 好像这里没法使用initializer_list,initializer_list是对于多个相同值的初始化,而不是一个东西的初始化参数列表
|
||
template<typename... Args>
|
||
explicit BiSortNode(Args... args, std::function<bool(T, T)> _compare) : data(args...) {
|
||
this->compare_function_(_compare);
|
||
}
|
||
|
||
template<typename... Args>
|
||
explicit BiSortNode(Args... args) : data(args...) {
|
||
this->compare_function_ = [](T&a, T&b) { return a < b; };
|
||
}
|
||
|
||
void update_depth_and_balance_factor() {
|
||
const int left_depth = this->left_child ? this->left_child->depth + 1 : 0;
|
||
const int right_depth = this->right_child ? this->right_child->depth + 1 : 0;
|
||
this->balance_factor = left_depth - right_depth;
|
||
this->depth = std::max(left_depth, right_depth);
|
||
}
|
||
|
||
// 这里的左旋指的是LL型需要进行的旋转,名称不一定对
|
||
// 这部分用注释不好解释,建议最好搜一下网上的图解,理解了之后再看这部分代码
|
||
static void left_rotate(NodePtr&unbalanced) {
|
||
NodePtr pivot = std::move(unbalanced->left_child);
|
||
unbalanced->left_child = std::move(pivot->right_child);
|
||
pivot->right_child = std::move(unbalanced);
|
||
unbalanced = std::move(pivot);
|
||
unbalanced->update_depth_and_balance_factor();
|
||
unbalanced->right_child->update_depth_and_balance_factor();
|
||
}
|
||
|
||
// 这里的右旋指的是RR型需要进行的旋转,名称不一定对
|
||
// 这部分用注释不好解释,建议最好搜一下网上的图解,理解了之后再看这部分代码
|
||
static void right_rotate(NodePtr&unbalanced) {
|
||
NodePtr pivot = std::move(unbalanced->right_child);
|
||
unbalanced->right_child = std::move(pivot->left_child);
|
||
pivot->left_child = std::move(unbalanced);
|
||
unbalanced = std::move(pivot);
|
||
unbalanced->update_depth_and_balance_factor();
|
||
unbalanced->left_child->update_depth_and_balance_factor();
|
||
}
|
||
|
||
static void insert(NodePtr¤t_node, T new_data) {
|
||
// int balance_diff = 0;
|
||
if (new_data < current_node->data) {
|
||
// 如果新的节点比当前节点小就找它的左子树
|
||
if (current_node->left_child == nullptr) {
|
||
current_node->left_child = std::make_unique<BiSortNode>(new_data);
|
||
}
|
||
else {
|
||
current_node->insert(current_node->left_child, new_data);
|
||
}
|
||
}
|
||
else {
|
||
// 否则找右子树
|
||
if (current_node->right_child == nullptr) {
|
||
current_node->right_child = std::make_unique<BiSortNode>(new_data);
|
||
}
|
||
else {
|
||
current_node->insert(current_node->right_child, new_data);
|
||
}
|
||
}
|
||
current_node->update_depth_and_balance_factor();
|
||
if (current_node->balance_factor > 1) {
|
||
// 左子树比右子树高
|
||
assert(current_node->left_child->balance_factor != 0); // 此时左子树的平衡因子不应为0
|
||
if (current_node->left_child->balance_factor < 0) // 符合LR型
|
||
current_node->right_rotate(current_node->left_child); // 先进行右旋(逆时针),转化为LL
|
||
current_node->left_rotate(current_node); // 左旋(顺时针)
|
||
}
|
||
else if (current_node->balance_factor < -1) {
|
||
// 右子树比左子树高
|
||
assert(current_node->right_child->balance_factor != 0); // 此时右子树的平衡因子不应为0
|
||
if (current_node->right_child->balance_factor > 0) // 符合RL型
|
||
current_node->left_rotate(current_node->right_child); // 先进行左旋(顺时针),转化为RR型
|
||
current_node->right_rotate(current_node); // 右旋(逆时针)
|
||
}
|
||
// current_node->balance_factor += balance_diff;
|
||
current_node->update_depth_and_balance_factor();
|
||
// return balance_diff;
|
||
}
|
||
|
||
void inorder_traversal(std::vector<T>&output) {
|
||
if (this->left_child != nullptr) this->left_child->inorder_traversal(output);
|
||
output.push_back(this->data);
|
||
if (this->right_child != nullptr) this->right_child->inorder_traversal(output);
|
||
}
|
||
|
||
void preorder_traversal(std::vector<T>&output) {
|
||
output.push_back(this->data);
|
||
if (this->left_child != nullptr) this->left_child->preorder_traversal(output);
|
||
if (this->right_child != nullptr) this->right_child->preorder_traversal(output);
|
||
}
|
||
|
||
void postorder_traversal(std::vector<T>&output) {
|
||
if (this->left_child != nullptr) this->left_child->postorder_traversal(output);
|
||
if (this->right_child != nullptr) this->right_child->postorder_traversal(output);
|
||
output.push_back(this->data);
|
||
}
|
||
|
||
void traverse_and_output(std::ostream&out, std::function<void(std::vector<T>&)> traverse_function) {
|
||
std::vector<T> traverse_result;
|
||
traverse_function(traverse_result);
|
||
for (auto const&i: traverse_result)
|
||
std::cout << i << " ";
|
||
std::cout << std::endl;
|
||
}
|
||
|
||
private:
|
||
NodePtr left_child;
|
||
NodePtr right_child;
|
||
int balance_factor = 0; // 平衡因子
|
||
int depth = 0; // 树的深度(高度)
|
||
T data;
|
||
std::function<bool(T&, T&)> compare_function_;
|
||
};
|
||
|
||
|
||
int main() {
|
||
std::vector<int> origin_vector;
|
||
int temp;
|
||
while (std::cin >> temp) {
|
||
origin_vector.push_back(temp);
|
||
}
|
||
auto generator = origin_vector.cbegin();
|
||
BiSortNode<int>::NodePtr bi_sort_node{new BiSortNode<int>(*generator++)};
|
||
while (generator != origin_vector.cend()) {
|
||
bi_sort_node->insert(bi_sort_node, *generator++);
|
||
}
|
||
std::vector<int> traversal_result;
|
||
bi_sort_node->inorder_traversal(traversal_result);
|
||
std::cout << "为了便于验证,以下依次输出平衡二叉树的前序、中序、后序遍历结果:" << std::endl;
|
||
bi_sort_node->traverse_and_output(std::cout, [&bi_sort_node](std::vector<int>&output) {
|
||
bi_sort_node->preorder_traversal(output);
|
||
});
|
||
bi_sort_node->traverse_and_output(std::cout, [&bi_sort_node](std::vector<int>&output) {
|
||
bi_sort_node->inorder_traversal(output);
|
||
});
|
||
bi_sort_node->traverse_and_output(std::cout, [&bi_sort_node](std::vector<int>&output) {
|
||
bi_sort_node->postorder_traversal(output);
|
||
});
|
||
return 0;
|
||
}
|
||
|
||
// 输入:
|
||
// 98 77 94 67 59 60 56 68 95 98 32 39 32 17 5 5 8 19 40 41
|
||
|
||
// 输出:
|
||
// 为了便于验证,以下依次输出平衡二叉树的前序、中序、后序遍历结果:
|
||
// 67 39 17 5 5 8 32 19 32 59 41 40 56 60 94 77 68 98 95 98
|
||
// 5 5 8 17 19 32 32 39 40 41 56 59 60 67 68 77 94 95 98 98
|
||
// 5 8 5 19 32 32 17 40 56 41 60 59 39 68 77 95 98 98 94 67
|