数据结构——第六章作业
This commit is contained in:
parent
72878fb052
commit
d1e111b62d
BIN
作业/数据结构-金健/10213903403第六章作业.pdf
Normal file
BIN
作业/数据结构-金健/10213903403第六章作业.pdf
Normal file
Binary file not shown.
10
作业/数据结构-金健/C++/第六章作业/CMakeLists.txt
Normal file
10
作业/数据结构-金健/C++/第六章作业/CMakeLists.txt
Normal file
@ -0,0 +1,10 @@
|
||||
cmake_minimum_required(VERSION 3.26)
|
||||
project(chapter6)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 23)
|
||||
|
||||
add_executable(graph1 第六章作业1.cpp)
|
||||
add_executable(graph2 第六章作业2.cpp)
|
||||
SET(EXECUTABLE_OUTPUT_PATH R:/)
|
||||
|
||||
set(CMAKE_CXX_FLAGS_RELEASE -fexec-charset=GBK)
|
235
作业/数据结构-金健/C++/第六章作业/graph.hpp
Normal file
235
作业/数据结构-金健/C++/第六章作业/graph.hpp
Normal file
@ -0,0 +1,235 @@
|
||||
//
|
||||
// Created by 423A35C7 on 2023-12-02.
|
||||
//
|
||||
|
||||
#ifndef GRAPH_H
|
||||
#define GRAPH_H
|
||||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <random>
|
||||
#include <cstring>
|
||||
#include <list>
|
||||
#include <map>
|
||||
|
||||
std::default_random_engine engine(time(nullptr));
|
||||
|
||||
class MergeFindSet {
|
||||
using int_ptr = std::unique_ptr<int>;
|
||||
|
||||
public:
|
||||
const int length;
|
||||
|
||||
explicit MergeFindSet(const int n)
|
||||
: length(n), elements(new int[n]) {
|
||||
memset(this->elements.get(), -1, n * sizeof(int));
|
||||
}
|
||||
|
||||
int find(const int index) {
|
||||
return elements.get()[index] == -1
|
||||
? index
|
||||
: elements.get()[index] = find(elements.get()[index]);
|
||||
}
|
||||
|
||||
void merge(const int a, const int b) {
|
||||
elements.get()[find(b)] = find(a);
|
||||
}
|
||||
|
||||
friend std::ostream& operator<<(std::ostream&out, const MergeFindSet&merge_find_set);
|
||||
|
||||
private:
|
||||
int_ptr elements;
|
||||
};
|
||||
|
||||
std::ostream& operator<<(std::ostream&out, const MergeFindSet&merge_find_set) {
|
||||
for (int i = 0; i < merge_find_set.length; ++i) {
|
||||
out << merge_find_set.elements.get()[i] << "\t";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* \brief 打印高维类型
|
||||
* \tparam T 最内层的类型
|
||||
* \param high_dimension 高维指针,应为 int**, bool*** 等类似的类型
|
||||
* \param length 长度(每一维的长度都应一样)
|
||||
* \param dimensino_num 维度
|
||||
*/
|
||||
template<typename T>
|
||||
void print(void* high_dimension, const int length, const int dimensino_num = 1) {
|
||||
void** temp = static_cast<void **>(high_dimension);
|
||||
if (dimensino_num <= 1) {
|
||||
for (int i = 0; i < length; ++i) {
|
||||
std::cout << static_cast<T *>(high_dimension)[i] << "\t";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < length; ++i) {
|
||||
print<T>(temp[i], length, dimensino_num - 1);
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
class Graph {
|
||||
public:
|
||||
~Graph() {
|
||||
for (int i = 0; i < this->node_num; ++i) {
|
||||
delete this->adjacency[i];
|
||||
}
|
||||
delete this->adjacency;
|
||||
for (int i = 0; i < this->node_num; ++i) {
|
||||
delete this->incidence[i];
|
||||
}
|
||||
delete this->incidence;
|
||||
}
|
||||
|
||||
explicit Graph(const int n)
|
||||
: merge_find_set_(n) {
|
||||
this->node_num = n;
|
||||
std::uniform_int_distribution<int> get_random(1, 100);
|
||||
this->adjacency = new int *[n];
|
||||
this->incidence = new bool *[n];
|
||||
for (int i = 0; i < n; ++i) {
|
||||
this->adjacency[i] = new int[n];
|
||||
this->incidence[i] = new bool[n];
|
||||
memset(this->incidence[i], 0, n * sizeof(bool));
|
||||
this->adjacency[i][i] = INT_MAX;
|
||||
for (int j = 0; j < i; ++j) {
|
||||
this->adjacency[i][j] = this->adjacency[j][i] = get_random(engine);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void print_adjacency() const {
|
||||
print<int>(this->adjacency, this->node_num, 2);
|
||||
}
|
||||
|
||||
void print_incidence() const {
|
||||
print<bool>(this->incidence, this->node_num, 2);
|
||||
}
|
||||
|
||||
void print_merge_find_set() {
|
||||
std::cout << this->merge_find_set_ << std::endl;
|
||||
}
|
||||
|
||||
bool same_league(const int start, const int target) {
|
||||
return this->merge_find_set_.find(start) == this->merge_find_set_.find(target);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief 把目标城市所在联盟合并到起始城市所在联盟中
|
||||
* \param start 起始城市
|
||||
* \param target 目标城市
|
||||
*/
|
||||
void merge(const int start, const int target) {
|
||||
this->merge_find_set_.merge(start, target);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief 开始记录关系矩阵是否被改变
|
||||
*/
|
||||
void start_record_incidence() {
|
||||
this->incidence_had_changed = false;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief 停止记录并返回关系矩阵是否被改变
|
||||
* \return 关系矩阵是否被改变
|
||||
*/
|
||||
bool stop_record_incidence() {
|
||||
const bool temp = this->incidence_had_changed;
|
||||
this->incidence_had_changed = false;
|
||||
return temp;
|
||||
}
|
||||
|
||||
friend void one_turn(Graph*);
|
||||
|
||||
protected:
|
||||
/**
|
||||
* \brief 邻接矩阵,表示任意两个城市之间的距离
|
||||
*/
|
||||
int** adjacency; // 邻接矩阵
|
||||
/**
|
||||
* \brief 城市数量
|
||||
*/
|
||||
int node_num;
|
||||
/**
|
||||
* \brief 关系矩阵,任意两个城市之间如果有直接的公路则为true(是对称的,反自反的关系)(不一定满足传递性)
|
||||
*/
|
||||
bool** incidence; // 关系矩阵
|
||||
bool incidence_had_changed;
|
||||
MergeFindSet merge_find_set_;
|
||||
};
|
||||
|
||||
|
||||
class ComplexGraph : public Graph {
|
||||
public:
|
||||
~ComplexGraph() {
|
||||
// this->~Graph(); // 好像析构函数会自动调用,不需要手动调用
|
||||
delete this->alpha;
|
||||
}
|
||||
|
||||
explicit ComplexGraph(const int n)
|
||||
: Graph(n) {
|
||||
this->alpha = new int[n];
|
||||
std::uniform_int_distribution<int> get_random(1, n / 2);
|
||||
for (int i = 0; i < n; ++i) {
|
||||
this->alpha[i] = get_random(engine);
|
||||
}
|
||||
}
|
||||
|
||||
void print_alpha() {
|
||||
// print<int>(this->alpha, this->node_num, 1);
|
||||
std::map<int, std::list<int>> index_to_league;
|
||||
for (int i = 0; i < this->node_num; ++i) {
|
||||
int ancestor = this->merge_find_set_.find(i);
|
||||
if (!index_to_league.contains(ancestor)) {
|
||||
index_to_league.insert({ancestor, {}});
|
||||
}
|
||||
index_to_league[ancestor].push_back(i);
|
||||
}
|
||||
for (const auto&[ancestor, child]: index_to_league) {
|
||||
std::cout << "城市联盟 { ";
|
||||
for (auto value: child) {
|
||||
std::cout << value << " ";
|
||||
}
|
||||
std::cout << " } 的规模系数为 ";
|
||||
std::cout << this->get_alpha(ancestor) << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void set_beta(const int beta) {
|
||||
this->beta = beta;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief 获取城市所在联盟的规模系数
|
||||
* \param index 城市序号
|
||||
* \return 城市所在联盟的规模系数
|
||||
*/
|
||||
[[nodiscard]] int get_alpha(const int index) {
|
||||
return this->alpha[this->merge_find_set_.find(index)];
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief 城市所在联盟的规模系数增加1
|
||||
* \param index 城市序号
|
||||
*/
|
||||
void increase_alpha(const int index) {
|
||||
this->alpha[this->merge_find_set_.find(index)]++;
|
||||
}
|
||||
|
||||
friend void one_turn(ComplexGraph*);
|
||||
|
||||
private:
|
||||
/**
|
||||
* \brief 每个城市的规模系数
|
||||
*/
|
||||
int* alpha;
|
||||
int beta = 0; // 限定系数
|
||||
};
|
||||
|
||||
#endif //GRAPH_H
|
BIN
作业/数据结构-金健/C++/第六章作业/release/chapter6.zip
Normal file
BIN
作业/数据结构-金健/C++/第六章作业/release/chapter6.zip
Normal file
Binary file not shown.
93
作业/数据结构-金健/C++/第六章作业/第六章作业1.cpp
Normal file
93
作业/数据结构-金健/C++/第六章作业/第六章作业1.cpp
Normal file
@ -0,0 +1,93 @@
|
||||
/*
|
||||
* 初步了解后发现实现获取最短的距离有三种方法:
|
||||
* 1. 使用标准库的merge或者inplace_merge,也就是归并排序;
|
||||
* 2. 使用标准库的priority_queue,也就是优先级队列,也就是堆;
|
||||
* 3. 使用标准库的multiset,也就是允许重复元素的集合(好像是用红黑树实现的)
|
||||
* 由于这里每次只需要获取最短的路径,因此优先级队列可能是比较好的选择。
|
||||
* (但是空间复杂度可能会比较高,因为$n$个节点最多需要存$n^2$条边,而实际上
|
||||
* 最小生成树只要n-1条边就可以全部连通,优先级队列无法把长度过大的不可能选中的边排除)
|
||||
* 但是优先级队列每次好像只能一个一个加,那还是用merge吧。
|
||||
*/
|
||||
|
||||
/*
|
||||
* 可以证明第二条规则无效,证明如下:
|
||||
* 若A、B、C三个城市存在环,即A申请修建AB,B申请修建BC,C申请修建CA,那么根据每个城市
|
||||
* 只会选择与它最近的城市修建公路,则必定有AB < AC, BC < BA, CA < CB,因此
|
||||
* AB < AC < BC < AB,而AB < AB是不可能的,因此不会存在这样的情况;
|
||||
* 同理,可以证明n个城市(n > 2)必定不存在环。
|
||||
*/
|
||||
|
||||
/*
|
||||
* 由于第二条规则无效,在第一题中,政府可以看做永远同意修建,因此,n个城市一轮后就会修建了
|
||||
* n条公路,而n-1条公路就能使城市全部连通,因此一轮结束后城市就已全部连通。
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include "graph.hpp"
|
||||
|
||||
// 一轮
|
||||
void one_turn(Graph* graph) {
|
||||
for (int start = 0; start < graph->node_num; ++start) {
|
||||
int target;
|
||||
while (true) {
|
||||
int* target_ptr = std::min_element(graph->adjacency[start],
|
||||
graph->adjacency[start] + graph->node_num);
|
||||
// 如果最小的目标城市距离都是INT_MAX,则说明start与所有城市都已连通,则不再修建
|
||||
if (*target_ptr == INT_MAX) {
|
||||
return;
|
||||
}
|
||||
target = target_ptr - graph->adjacency[start];
|
||||
// 如果在同一个城市联盟内,那么把这个目标城市排除,在剩下的目标城市中继续
|
||||
if (graph->same_league(start, target)) {
|
||||
graph->adjacency[start][target] = INT_MAX;
|
||||
continue;
|
||||
}
|
||||
// 如果已经修建过了,则换个目标城市
|
||||
if (graph->incidence[start][target]) {
|
||||
continue;
|
||||
}
|
||||
// 不需要考虑三个或以上成环的情况
|
||||
break;
|
||||
}
|
||||
// 修建公路,即在关系矩阵上将相应的行列置为true
|
||||
graph->incidence[start][target] = graph->incidence[target][start] = true;
|
||||
// 把目标城市所在联盟合并到起始城市所在联盟中
|
||||
graph->merge(start, target);
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
int n;
|
||||
std::cout << "输入城市的个数:";
|
||||
std::cin >> n;
|
||||
auto graph = Graph(n);
|
||||
std::cout << "初始的距离的邻接矩阵为:" << std::endl;
|
||||
graph.print_adjacency();
|
||||
|
||||
one_turn(&graph);
|
||||
std::cout << "第一轮后的关系矩阵如下:" << std::endl;
|
||||
graph.print_incidence();
|
||||
std::cout << "并查集如下:" << std::endl;
|
||||
graph.print_merge_find_set();
|
||||
std::cout << "可以看到,一轮后就已经全部连通。" << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// 输入城市的个数:5
|
||||
// 初始的距离的邻接矩阵为:
|
||||
// 2147483647 69 19 14 90
|
||||
// 69 2147483647 66 82 66
|
||||
// 19 66 2147483647 48 8
|
||||
// 14 82 48 2147483647 22
|
||||
// 90 66 8 22 2147483647
|
||||
//
|
||||
// 第一轮后的关系矩阵如下:
|
||||
// 0 0 0 1 0
|
||||
// 0 0 1 0 0
|
||||
// 0 1 0 0 1
|
||||
// 1 0 0 0 1
|
||||
// 0 0 1 1 0
|
||||
//
|
||||
// 并查集如下:
|
||||
// -1 0 0 0 0
|
||||
// 可以看到,一轮后就已经全部连通。
|
160
作业/数据结构-金健/C++/第六章作业/第六章作业2.cpp
Normal file
160
作业/数据结构-金健/C++/第六章作业/第六章作业2.cpp
Normal file
@ -0,0 +1,160 @@
|
||||
//
|
||||
// Created by 423A35C7 on 2023-12-02.
|
||||
//
|
||||
|
||||
#include <iostream>
|
||||
#include "graph.hpp"
|
||||
// 这次执行一轮后不一定结束了,
|
||||
void one_turn(ComplexGraph* graph) {
|
||||
for (int start = 0; start < graph->node_num; ++start) {
|
||||
int target;
|
||||
while (true) {
|
||||
int* target_ptr = std::min_element(graph->adjacency[start],
|
||||
graph->adjacency[start] + graph->node_num);
|
||||
// 如果最小的目标城市距离都是INT_MAX,则说明start与所有城市都已连通,则不再修建
|
||||
if (*target_ptr == INT_MAX) {
|
||||
return;
|
||||
}
|
||||
target = target_ptr - graph->adjacency[start];
|
||||
// 如果在同一个城市联盟内,那么把这个目标城市排除,在剩下的目标城市中继续
|
||||
if (graph->same_league(start, target)) {
|
||||
graph->adjacency[start][target] = INT_MAX;
|
||||
continue;
|
||||
}
|
||||
// 如果已经修建过了,则换个目标城市
|
||||
if (graph->incidence[start][target]) {
|
||||
continue;
|
||||
}
|
||||
// 不需要考虑三个或以上成环的情况
|
||||
break;
|
||||
}
|
||||
const int start_alpha = graph->get_alpha(start);
|
||||
const int target_alpha = graph->get_alpha(target);
|
||||
// 当城市规模系数α到达限定系数β后,我们认为该 league
|
||||
// 已经到达“稳定”,不再与任何其他城市修建公路。
|
||||
if (start_alpha >= graph->beta || target_alpha >= graph->beta) {
|
||||
continue;
|
||||
}
|
||||
if (start_alpha < target_alpha) {
|
||||
// 规模小于目标城市,则政府拒绝修建
|
||||
continue;
|
||||
}
|
||||
else if (start_alpha == target_alpha) {
|
||||
// 若两个城市规模相等,则修建过后两座城市形成的 league 城市规模系数α增一
|
||||
graph->increase_alpha(start);
|
||||
}
|
||||
else if (start_alpha > target_alpha) {
|
||||
// 若大于目标城市,则同意修建,规模系数不变
|
||||
;
|
||||
}
|
||||
// 修建公路,即在关系矩阵上将相应的行列置为true
|
||||
graph->incidence[start][target] = graph->incidence[target][start] = true;
|
||||
graph->incidence_had_changed = true; // 保护字段为什么能直接访问?
|
||||
// 把目标城市所在联盟合并到起始城市所在联盟中
|
||||
graph->merge(start, target);
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
int n, beta;
|
||||
|
||||
std::cout << "输入城市的个数:";
|
||||
std::cin >> n;
|
||||
auto graph = ComplexGraph(n);
|
||||
std::cout << "初始的城市规模为:" << std::endl;
|
||||
graph.print_alpha();
|
||||
std::cout << "请输入限定系数beta:";
|
||||
std::cin >> beta;
|
||||
graph.set_beta(beta);
|
||||
|
||||
std::cout << "初始的距离的邻接矩阵为:" << std::endl;
|
||||
graph.print_adjacency();
|
||||
|
||||
for (int turn_num = 1; ; turn_num++) {
|
||||
graph.start_record_incidence();
|
||||
one_turn(&graph);
|
||||
// 当关系矩阵不再被改变,也就是说明不再修桥了,则说明达到稳定
|
||||
if (!graph.stop_record_incidence()) {
|
||||
break;
|
||||
}
|
||||
std::cout << "第" << turn_num << "轮后的关系矩阵如下:" << std::endl;
|
||||
graph.print_incidence();
|
||||
std::cout << "规模系数如下:" << std::endl;
|
||||
graph.print_alpha();
|
||||
std::cout << "并查集如下:" << std::endl;
|
||||
graph.print_merge_find_set();
|
||||
std::cout << std::endl;
|
||||
}
|
||||
std::cout << "已经达到稳定" << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// 输入城市的个数:10
|
||||
// 初始的城市规模为:
|
||||
// 城市联盟 { 0 } 的规模系数为 2
|
||||
// 城市联盟 { 1 } 的规模系数为 5
|
||||
// 城市联盟 { 2 } 的规模系数为 2
|
||||
// 城市联盟 { 3 } 的规模系数为 1
|
||||
// 城市联盟 { 4 } 的规模系数为 3
|
||||
// 城市联盟 { 5 } 的规模系数为 4
|
||||
// 城市联盟 { 6 } 的规模系数为 2
|
||||
// 城市联盟 { 7 } 的规模系数为 2
|
||||
// 城市联盟 { 8 } 的规模系数为 4
|
||||
// 城市联盟 { 9 } 的规模系数为 3
|
||||
// 请输入限定系数beta:5
|
||||
// 初始的距离的邻接矩阵为:
|
||||
// 2147483647 63 39 34 97 93 35 42 68 29
|
||||
// 63 2147483647 11 100 82 48 31 2 33 58
|
||||
// 39 11 2147483647 85 100 27 47 97 86 91
|
||||
// 34 100 85 2147483647 15 32 16 77 84 29
|
||||
// 97 82 100 15 2147483647 4 53 63 54 29
|
||||
// 93 48 27 32 4 2147483647 25 85 86 58
|
||||
// 35 31 47 16 53 25 2147483647 97 27 88
|
||||
// 42 2 97 77 63 85 97 2147483647 61 91
|
||||
// 68 33 86 84 54 86 27 61 2147483647 66
|
||||
// 29 58 91 29 29 58 88 91 66 2147483647
|
||||
//
|
||||
// 第1轮后的关系矩阵如下:
|
||||
// 0 0 0 0 0 0 0 0 0 1
|
||||
// 0 0 0 0 0 0 0 0 0 0
|
||||
// 0 0 0 0 0 0 0 0 0 0
|
||||
// 0 0 0 0 0 0 1 0 0 0
|
||||
// 0 0 0 0 0 1 0 0 0 0
|
||||
// 0 0 0 0 1 0 0 0 0 0
|
||||
// 0 0 0 1 0 0 0 0 1 0
|
||||
// 0 0 0 0 0 0 0 0 0 0
|
||||
// 0 0 0 0 0 0 1 0 0 0
|
||||
// 1 0 0 0 0 0 0 0 0 0
|
||||
//
|
||||
// 规模系数如下:
|
||||
// 城市联盟 { 1 } 的规模系数为 5
|
||||
// 城市联盟 { 2 } 的规模系数为 2
|
||||
// 城市联盟 { 4 5 } 的规模系数为 4
|
||||
// 城市联盟 { 7 } 的规模系数为 2
|
||||
// 城市联盟 { 3 6 8 } 的规模系数为 4
|
||||
// 城市联盟 { 0 9 } 的规模系数为 3
|
||||
// 并查集如下:
|
||||
// 9 -1 -1 8 5 -1 8 -1 -1 -1
|
||||
//
|
||||
// 第2轮后的关系矩阵如下:
|
||||
// 0 0 0 0 0 0 0 0 0 1
|
||||
// 0 0 0 0 0 0 0 0 0 0
|
||||
// 0 0 0 0 0 0 0 0 0 0
|
||||
// 0 0 0 0 1 0 1 0 0 0
|
||||
// 0 0 0 1 0 1 0 0 0 0
|
||||
// 0 0 0 0 1 0 0 0 0 0
|
||||
// 0 0 0 1 0 0 0 0 1 0
|
||||
// 0 0 0 0 0 0 0 0 0 0
|
||||
// 0 0 0 0 0 0 1 0 0 0
|
||||
// 1 0 0 0 0 0 0 0 0 0
|
||||
//
|
||||
// 规模系数如下:
|
||||
// 城市联盟 { 1 } 的规模系数为 5
|
||||
// 城市联盟 { 2 } 的规模系数为 2
|
||||
// 城市联盟 { 7 } 的规模系数为 2
|
||||
// 城市联盟 { 3 4 5 6 8 } 的规模系数为 5
|
||||
// 城市联盟 { 0 9 } 的规模系数为 3
|
||||
// 并查集如下:
|
||||
// 9 -1 -1 8 8 8 8 -1 -1 -1
|
||||
//
|
||||
// 已经达到稳定
|
Loading…
Reference in New Issue
Block a user