SchoolWork-LaTeX/离散数学/平时作业/第七周作业.tex
423A35C7 5906ac1efc 重构目录层次
0-课程笔记
1-平时作业
2-实验报告
3-期末大作业
2024-09-02 18:32:58 +08:00

79 lines
4.2 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\pagestyle{fancyplain}
\fancyhead{}
\fancyhead[C]{\mysignature}
\setcounter{chapter}{4}
\setcounter{section}{1}
\begin{document}
\section{谓词公式的等值演算和前束范式}
\begin{enumerate}
\item 指出谓词公式$\forall x\forall y(P(x,y)\lor Q(y,z))\land \exists xR(x,y)$的指导变元、量词的辖域、约束变元和自由变元。
\begin{figure}[h]
\centering
\includexopp[0.8]{7.1.1}
\end{figure}
\item 求谓词公式$\forall x \forall y (P(x,y) \leftrightarrow Q(x,y)) \to \exists x \forall y R(x,y)$的前束范式。
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&\forall x \forall y(P(x,y) \leftrightarrow Q(x,y)) \to \exists x \forall y R(x, y) \\
=&\forall x \forall y(P(x,y)\leftrightarrow Q(x,y)) \to \exists z \forall uR(z, u) & (换名) \\
=&\lnot (\forall x\forall y(P(x,y)\leftrightarrow Q(x,y)))\lor \exists z\forall uR(z,u) & (消去\to \\
=&\exists x\exists y(\lnot (P(x,y)\leftrightarrow Q(x,y)))\lor \exists z\forall u R(z,u) & (内移\lnot \\
=&\exists x\exists y\exists z\forall u(\lnot (P(x,y)\leftrightarrow Q(x,y))\lor R(z,u)) & (量词前移) \\
=&\exists x\exists y\exists z\forall u((P(x,y)\leftrightarrow Q(x,y))\to R(z,u)) & (恢复\to (非必要)) \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\end{enumerate}
\section{一阶逻辑的推理理论}
\begin{enumerate}
\item 构造$\forall x(P(x)\lor Q(x)), \forall x(Q(x) \to \lnot R(x)), \forall xR(x) \Rightarrow \forall xP(x)$的形式证明。
\begin{proof}
\begin{zhongwen}
$$设y为任意的个体变量$$
\begin{enumerate}[label=\mycircle{\arabic{enumii}},leftmargin=\linewidth/4,rightmargin=\linewidth/4]
\item $\forall x(P(x)\lor Q(x))$\hfill 前提引入
\item $P(y)\lor Q(y)$\hfill \mycircle{1} US规则
\item $\forall x(Q(x)\to \lnot R(x))$\hfill 前提引入
\item $Q(y)\to \lnot R(y)$\hfill \mycircle{3} US规则
\item $\forall xR(x)$ \hfill 前提引入
\item $R(y)$\hfill \mycircle{5} US规则
\item $\lnot Q(y)$\hfill \mycircle{4} \mycircle{6} 拒取式
\item $P(y)$ \hfill \mycircle{2} \mycircle{7} 析取三段论
\item $\forall xP(x)$\hfill \mycircle{8} UG规则
\end{enumerate}
\end{zhongwen}
\end{proof}
\item 证明下面的推理:\\
“每个科研工作者都是努力工作的。每个努力工作而又聪明的人都取得事业的成功。某个人是科研工作者并且聪明。所以,某人事业取得成功。”
\begin{zhongwen}
$$
\begin{aligned}
&设P(x): x是科研工作者Q(x): x努力工作R(x): x聪明S(x): x取得事业的成功 \\
&e: 某个人,则需要证明: \\
&\forall x(P(x)\to Q(x)), \forall x (Q(x)\land R(x)\to S(x)), P(e)\land R(e) \Rightarrow S(e) \\
\end{aligned}
$$
\end{zhongwen}
\begin{proof}
\begin{zhongwen}
\begin{enumerate}[label=\mycircle{\arabic{enumii}},leftmargin=\linewidth/4,rightmargin=\linewidth/4]
\item $P(e)\land R(e)$\hfill 前提引入
\item $P(e)$\hfill \mycircle{1} 化简
\item $R(e)$\hfill \mycircle{1} 化简
\item $\forall x(P(x)\to Q(x))$\hfill 前提引入
\item $P(e)\to Q(e)$\hfill \mycircle{4} US规则
\item $Q(e)$\hfill \mycircle{2} \mycircle{5} 假言推理
\item $Q(e)\land R(e)$\hfill \mycircle{3} \mycircle{6} 合取引入
\item $\forall x(Q(x)\land R(x)\to S(x))$\hfill 前提引入
\item $Q(e)\land R(e)\to S(e)$\hfill \mycircle{8} US规则
\item $S(e)$\hfill \mycircle{7} \mycircle{9} 假言推理
\end{enumerate}
\end{zhongwen}
\end{proof}
\end{enumerate}
\end{document}