SchoolWork-LaTeX/随机过程/平时作业/第四周作业.tex
423A35C7 5906ac1efc 重构目录层次
0-课程笔记
1-平时作业
2-实验报告
3-期末大作业
2024-09-02 18:32:58 +08:00

192 lines
8.5 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\input{mysubpreamble}
\begin{document}
\setcounter{chapter}{2}
\section{《随机过程》第四周作业}
\setcounter{subsection}{1}
\subsection{练习题\thechapter.\thesubsection}
\begin{enumerate}
\questionandanswer[]{
已知$W$是初值为$0$的随机游动,步长分布为
$$
P(X_n=-2)=P(X_n=-1)=P(X_n=1)=\frac{1}{3}
$$
}{}
\begin{enumerate}
\questionandanswerSolution[]{
求概率$P(W_3=-2)$
}{
$m,n,k$分别为选择$-2,-1,1$的次数,那么
$$
\begin{cases}
m+n+k=3 \\
-2m-n+k=-2 \\
\end{cases}
$$
由此可得$3m+2n=5$。由于$m,n,k$均为非负整数,因此
$$
(m,n,k)=(1,1,1)
$$
所以
$$
P(W_3=-2)=p_3(0,-2)=C_{3}^{1}C_{2}^{1} \left( \frac{1}{3} \right) ^{3}=\frac{2}{9}
$$
}
\questionandanswerSolution[]{
求概率$P(W_3=-2,W_7=0)$
}{
$$
P(W_3=-2,W_7=0)=p_3(0,-2)p_4(-2,0)=p_3(0,-2)p_4(0,2)
$$
继续同上方法
$$
\begin{cases}
m+n+k=4 \\
-2m-n+k=2 \\
\end{cases} \Longrightarrow (m,n,k)=(0,1,3)
$$
$$
p_4(0,2)=\mathrm{C}_{4}^{1}\left( \frac{1}{3} \right) ^{4} = \frac{4}{81}
$$
所以
$$
P(W_3=-2,W_7=0)=\frac{2}{9}\times \frac{4}{81} = \frac{8}{729}
$$
}
\questionandanswerSolution[]{
求概率$P(W_1>0,W_2>0, \cdots ,W_5>0,W_6=2)$
}{
% $$
% \frac{\mathrm{d}}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}+x+1)^{5} = 360360 x^{10} + 772200 x^{8} + 475200 x^{7} + 554400 x^{6} + 604800 x^{5} + 302400 x^{4} + 201600 x^{3} + 88200 x^{2} + 21600 x + 3720
% $$
根据反射原理,
$$
\begin{aligned}
&P(W_1>0,W_2>0, \cdots ,W_5>0,W_6=2) \\
=&P(W_1=1)P(W_2>0, \cdots ,W_5>0,W_6=2) \\
=&P(W_1=1)P(W_2>0, \cdots ,W_5>0,W_6=2) \\
=&P(W_1=1)p_5(-1,2) = P(W_1=1)p_5(0,3) \\
\end{aligned}
$$
继续同上方法
$$
\begin{cases}
m+n+k=5 \\
-2m-n+k=3 \\
\end{cases} \Longrightarrow (m,n,k)=(0,1,4)
$$
$$
p_5(0,3)=\mathrm{C}_{5}^{1}\left( \frac{1}{3} \right) ^{5} = \frac{5}{243}
$$
所以
$$
\text{原式}=P(W_1=1)p_5(0,3)=\frac{1}{3}\times \frac{5}{243} = \frac{5}{729}
$$
}
\end{enumerate}
\questionandanswerSolution[5]{
分别记甲乙两种药物对某种疾病的治愈率为$p_1,p_2$。为了比较它们的治愈率
大小, 安排了一系列如下的临床对比试验: 每次试验同时治疗两个病人,一
个接受甲药治疗,另一个接受乙药治疗。观察每次治疗效果。假设每次试验
是独立的; 病人对药物的疗效无本质影响。试用恰当的整数值随机游动模型
对这样一系列的试验中治愈病人数差异的变化建模。 对任意$x\in \mathbb{Z}$,试写该
模型的一步转移概率$p(x)$
}{
设随机变量$X_0=1$,随机变量序列$\{ X_n\ ;\ n\geqslant 1 \}$表示每次试验增加的治愈病人数,而随机过程$W=\{ \sum_{k=0}^{n} X_k\ ;\ n\geqslant 0 \}$表示这样一系列的试验中总治愈病人数,则$\{ X_n\ ;\ n\geqslant 0 \}$相互独立且只能取整数值,且对$\forall n\geqslant 1$$X_n$的分布相同,从而$W$是整数值的随机游动。则该模型的一步转移概率为
$$
p(x)=\begin{cases}
(1-p_1)(1-p_2),\quad & x=0 \\
p_1(1-p_2)+p_2(1-p_1),\quad & x=1 \\
p_1p_2,\quad & x=2 \\
\end{cases}\quad =\begin{cases}
1-p_1-p_2+p_1p_2,\quad & x=0 \\
p_1+p_2-2p_1p_2,\quad & x=1 \\
p_1p_2,\quad & x=2 \\
\end{cases}
$$
}
% $$
% 1-\sum_{i=1}^{n} \frac{1}{2i-1}\binom{2i}{i}\left( \frac{1}{2} \right) ^{2i} - \binom{2n}{n}\left( \frac{1}{2} \right) ^{2n} = 0 = = - \frac{\Gamma(n + \frac{1}{2})}{\sqrt{\pi} \Gamma(n + 1)} + 1
% $$
\questionandanswer[6]{
对初值为$0$的简单对称随机游动$W$,
}{}
\begin{enumerate}
\questionandanswerProof[]{
对任意$n\geqslant 1$,证明$P(W_1\neq 0, W_2\neq 0, \cdots ,W_{2n}\neq 0)=P(W_{2n}=0)$
}{
$$
\text{左边}=P(\tau_0>2n), \quad \text{右边}=\mathrm{C}_{2n}^{n}\left( \frac{1}{2} \right) ^{n}\left( \frac{1}{2} \right) ^{n}
$$
$$
\begin{aligned}
P(\tau_0>2n)=1-P(\tau_0\leqslant 2n)=1-\sum_{m=1}^{2n} P(\tau_0=m)
\end{aligned}
$$
由于$P(\tau_0 \text{为奇数})=0$,所以
$$
\begin{aligned}
P(\tau_0>2n)=1-\sum_{i=1}^{n} P(\tau_0=2i)=1-\sum_{i=1}^{n} \frac{1}{2i-1}\mathrm{C}_{2i}^{i} \left( \frac{1}{2} \right) ^{2i} =\frac{\Gamma(n + \frac{1}{2})}{\sqrt{\pi} \Gamma(n + 1)}
\end{aligned}
$$
使用Python计算可得
$$
\frac{\Gamma(n + \frac{1}{2})}{\sqrt{\pi} \Gamma(n + 1)} - \binom{2n}{n}\left( \frac{1}{2} \right) ^{2n} = 0
$$
$$
P(\tau_0>2n)=\frac{\Gamma(n + \frac{1}{2})}{\sqrt{\pi} \Gamma(n + 1)} = \binom{2n}{n}\left( \frac{1}{2} \right) ^{2n} = \mathrm{C}_{2n}^{n}\left( \frac{1}{2} \right) ^{n}\left( \frac{1}{2} \right) ^{n}
$$
因此
$$
\text{左边}=\text{}右边
$$
}
\questionandanswerSolution[]{
$F_1(s)=\sum_{k=1}^{\infty} P(\tau_1=k|W_0=0)s^{k}$,其中$\left\vert s \right\vert <1$,求$F_1(s)$
}{
% $$
% \sum_{k=1}^{\infty} \binom{k}{\frac{k-1}{2}}\left( \frac{1}{2} \right) ^{2k} s^{k} = \frac{\sum_{k=1}^{\infty} \frac{2^{- k} s^{k} \Gamma(\frac{k}{2} + 1)}{\Gamma(\frac{k + 3}{2})}}{\sqrt{\pi}}
% $$
$$
\begin{aligned}
F_1(s)&=\sum_{k=1}^{\infty} P_0(\tau_1=k)s^{k}=\sum_{k=1}^{\infty} P(\tau_1=k,W_k=1)s^{k} \\
&=\sum_{k=1}^{\infty} P(\tau_1=k|W_k=1)P(W_k=1)s^{k} \\
\end{aligned}
$$
根据对称原理,从$0$经过$k$步到$1$中间不碰$1$,相当于从$0$经过$k$步到$1$中间不碰$0$
$$
\begin{aligned}
\text{上式}&=\sum_{k=1}^{\infty} P(\tau_0>k|W_k=1)P(W_k=1)s^{k} \\
&=\sum_{k=1}^{\infty}\frac{1}{k}\mathrm{C}_{k}^{\frac{k-1}{2}} \left( \frac{1}{2} \right) ^{2k} s^{k} \\
&=\sum_{k=1}^{\infty}\frac{1}{k}\left( \frac{1}{2} \right) ^{2k} \frac{k!s^{k}}{\frac{k+1}{2}! \frac{k-1}{2}!}\\
\end{aligned}
$$
$\sqrt{1-x}$$x=0$点的幂级数展开为
$$
\sqrt{1-x}=\sum_{n=1}^{\infty} (-1)^{n}\left( \frac{1}{2} \right) ^{n}n!
$$
所以
$$
F_1(s) = \frac{\sum_{k=1}^{\infty} \frac{2^{- k} s^{k} \Gamma(\frac{k}{2})}{\Gamma(\frac{k + 3}{2})}}{2 \sqrt{\pi}}
$$
}
\end{enumerate}
\questionandanswerProof[7]{
对初值为$0$的简单随机游动$W$,证明:对任意正整数$N$以及与$N$同奇偶的整数$a\in [-N,N]$
$$
P(W_k<k,k=1, \cdots ,N-1|W_N=a)=\frac{N-a}{2N}
$$
}{
$W$$(q,p)$简单随机游动
$$
\begin{aligned}
&P(W_k<k,k=1, \cdots ,N-1|W_N=a)=\frac{P(W_k<k,k=1, \cdots ,N-1, W_N=a)}{P(W_N=a)} \\
=&\frac{q \cdot P(W_N=a|W_1=-1)}{P(W_N=a|W_0=0)} = \frac{q\cdot P(W_{N-1}=a+1|W_0=0)}{P(W_N=a|W_0=0)} \\
=&\frac{q\cdot \mathrm{C}_{N-1}^{\frac{N+a}{2}}p^{\frac{N+a}{2}}q^{\frac{N-a}{2}-1}}{\mathrm{C}_{N}^{\frac{N+a}{2}}p^{\frac{N+a}{2}}q^{\frac{N-a}{2}}} = \frac{\mathrm{C}_{N-1}^{\frac{N+a}{2}}}{\mathrm{C}_{N}^{\frac{N+a}{2}}} = \frac{\frac{(N-1)!}{(\frac{N+a}{2})!(\frac{N-a}{2}-1)!}}{\frac{N!}{(\frac{N+a}{2})!(\frac{N-a}{2})!}}=\frac{\frac{1}{1}}{\frac{N}{\frac{N-a}{2}}}=\frac{\frac{N-a}{2}}{N} \\
=&\frac{N-a}{2N} \\
\end{aligned}
$$
}
\end{enumerate}
\end{document}