SchoolWork-LaTeX/概率论/平时作业/单元作业6.tex
423A35C7 5906ac1efc 重构目录层次
0-课程笔记
1-平时作业
2-实验报告
3-期末大作业
2024-09-02 18:32:58 +08:00

156 lines
8.5 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\setlength{\textheight}{210em}
\setlength{\paperheight}{210em}
\begin{document}
\chapter{单元作业6}
\begin{enumerate}
\item 证明随机变量$X$的特征函数是实值函数当且仅当$X$$-X$同分布。
\begin{proof}
\begin{zhongwen}
$X$的特征函数为$f_{X}(t)$,则
$$
\begin{aligned}
X的特征函数是实值函数 \iff& f_{X}(t)=\overline{f_{X}(t)} \\
\iff& f_{X}(t)=f_{X}(-t) \\
\iff& Ee^{itX}=Ee^{i(-t)X} \\
\iff& Ee^{itX}=Ee^{it(-X)} \\
\iff& f_{X}(t)=f_{-X}(t) \\
\iff& X与-X同分布 \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 设随机变量$X$的特征函数为$f(t)=\left( \frac{2-it}{2} \right) ^{-2}$,求$EX$$\operatorname{Var}X$
\begin{proof}[解]
\begin{zhongwen}
% 根据唯一性定理的推论,可知$X$的概率密度函数为
% $$
% p(x)=\frac{1}{2\pi }\int_{-\infty}^{+\infty} e^{-itx}\left( \frac{2-it}{2} \right) ^{-2} \mathrm{d}t
% $$
根据特征函数的性质,可知
$$
iEX = \left. f'(t) \right|_{t=0}=\left. \left( -\frac{i}{2}\cdot (-2)\left( \frac{2-it}{2} \right) ^{-3} \right) \right|_{t=0}=i\cdot 1^{-3}=i
$$
$$
-EX^{2}=i^{2}EX^{2}=\left. f''(t) \right|_{t=0}=\left.\left( i\cdot \left( -\frac{i}{2} \right) \cdot (-3)\left( \frac{2-it}{2} \right) ^{-4} \right) \right|_{t=0}=\left( -\frac{3}{2} \right) \cdot 1^{-4}=-\frac{3}{2}
$$
所以有
$$
EX=1, \qquad EX^{2}=\frac{3}{2}, \qquad \operatorname{Var}X=EX^{2}-(EX)^{2}=\frac{3}{2}-1^{2}=\frac{1}{2}
$$
\end{zhongwen}
\end{proof}
\item$X_i$独立同分布,且$X_i\sim \operatorname{Exp}(\lambda ),i=1,2, \ldots ,n$。试用特征函数的方法证明:
$$
Y_n=\sum_{i=1}^{n}X_i\sim \operatorname{Ga}(n,\lambda )
$$
\begin{proof}
\begin{zhongwen}
根据题意可知$X_i$的概率密度函数为$p(x)=\begin{cases}
\lambda e^{-\lambda x},\quad & x>0 \\
0,\quad & x\leqslant 0 \\
\end{cases}$。根据特征函数的定义,计算$X_i$的特征函数$f(t)$
$$
\begin{aligned}
f(t)&=Ee^{itX_{i}}=\int_{-\infty}^{+\infty} e^{itx}p(x) \mathrm{d}x=\int_{0}^{+\infty} e^{itx}\lambda e^{-\lambda x} \mathrm{d}x=\frac{\lambda}{it-\lambda }\int_{0}^{+\infty} e^{(it-\lambda )x} \mathrm{d}(it-\lambda )x \\
&=\frac{\lambda}{it-\lambda }\cdot \left. e^{(it-\lambda )x} \right|_{0}^{+\infty}=\frac{\lambda }{it-\lambda } \cdot \left( \lim_{x \to +\infty}e^{itx-\lambda x}-1 \right)=\frac{\lambda}{it-\lambda }\cdot \left( \lim_{x \to +\infty}e^{-\lambda x}e^{itx} -1 \right) \\
\end{aligned}
$$
对于$\displaystyle \lim_{x \to +\infty}e^{-\lambda x}e^{itx}$,设$a=e^{-\lambda x}e^{itx}$,将其看作复数的模长辐角表示法,则$a$的模长为$e^{-\lambda x}$,辐角为$tx$。由于$\lambda >0$,所以当$x \to +\infty$时,$a$的模长$e^{-\lambda x} \to 0$(辐角$tx \to +\infty$,但不重要),因此$\displaystyle \lim_{x \to +\infty}e^{-\lambda x}e^{itx}=\lim_{x \to +\infty}a=0$
于是$\displaystyle f(t)=\frac{\lambda}{it-\lambda }\cdot (0-1)=\frac{\lambda }{\lambda -it}$
由于$X_i$相互独立,所以$Y_n$的特征函数为:
$$
g(t)=\left[ f(t) \right] ^{n}=\left( \frac{\lambda }{\lambda -it} \right) ^{n}
$$
再计算$Y\sim \operatorname{Ga}(n,\lambda )$的特征函数:
$$
\begin{aligned}
h(t)&=Ee^{itY}=\int_{-\infty}^{+\infty} e^{itx}p(x) \mathrm{d}x=\int_{0}^{+\infty} e^{itx} \frac{\lambda ^{n}}{\Gamma (n)}x^{n-1}e^{-\lambda x} \mathrm{d}x \\
&=\frac{\lambda ^{n}}{(\lambda -it)^{n}}\int_{0}^{+\infty} \frac{(\lambda -it)^{n}}{\Gamma (n)}x^{n-1}e^{(it-\lambda )x} \mathrm{d}x \\
\end{aligned}
$$
注意到$\displaystyle \frac{(\lambda -it)^{n}}{\Gamma (n)}x^{n-1}e^{(it-\lambda )}$(零延拓后)为$\operatorname{Ga}(n, \lambda -it)$的概率密度函数,根据分布函数的正则性,$\displaystyle \int_{0}^{+\infty} \frac{(\lambda -it)^{n}}{\Gamma (n)}x^{n-1}e^{(it-\lambda )} \mathrm{d}x=1$,所以
$$
h(t)=\frac{\lambda ^{n}}{(\lambda -it)^{n}}=\left( \frac{\lambda }{\lambda -it} \right) ^{n}=g(t)
$$
根据特征函数的唯一性,$Y_n$$Y$同分布,即
$$
Y_n=\sum_{i=1}^{n}X_i\sim \operatorname{Ga}(n,\lambda )
$$
\end{zhongwen}
\end{proof}
\item$X_n\xrightarrow{P}X,X_n\xrightarrow{P}Y$。证明$P(X=Y)=1$
\begin{proof}
\begin{zhongwen}
根据依概率收敛的运算性质,有
$$
0=X_n-X_n\xrightarrow{P}X-Y
$$
即对任意的$\varepsilon>0$,有
$$
\lim_{n \to \infty} P(\left\vert 0-(X-Y) \right\vert \geqslant \varepsilon)=\lim_{n \to \infty}P(\left\vert X-Y \right\vert \geqslant \varepsilon)=P(\left\vert X-Y \right\vert \geqslant \varepsilon)=0
$$
$\varepsilon \to 0$,则根据概率的下连续性,可得
$$
P(\left\vert X-Y \right\vert >0)=0
$$
由于$\left\vert X-Y \right\vert \geqslant 0$,所以
$$
P(\left\vert X-Y \right\vert =0)=1-P(\left\vert X-Y \right\vert >0)=1
$$
$P(X=Y)=1$
\end{zhongwen}
\end{proof}
\item 证明$\displaystyle \lim_{n \to \infty}E\left( \frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert } \right) =0$当且仅当$X_n\xrightarrow{P}0$
\begin{proof}
\begin{zhongwen}
对任意的$\varepsilon>0$$1=1_{\{ \left\vert X_n \right\vert \leqslant \varepsilon \}}+1_{\{ \left\vert X_n \right\vert >\varepsilon \}}$。所以有如下不等式:
$$
\begin{aligned}
\frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert }&=\frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert }1_{\{ \left\vert X_n \right\vert \leqslant \varepsilon \}}+\frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert }1_{\{ \left\vert X_n \right\vert >\varepsilon \}} \\
&\leqslant \left\vert X_n \right\vert 1_{\{ \left\vert X_n \right\vert \leqslant \varepsilon \}}+1_{\{ \left\vert X_n \right\vert >\varepsilon \}}\leqslant \varepsilon+1_{\{ \left\vert X_n \right\vert >\varepsilon \}} \\
\end{aligned}
$$
等式两边同时取期望,则
$$
E\left( \frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert } \right) \leqslant E(\varepsilon+1_{\{ \left\vert X_n \right\vert >\varepsilon \}})=\varepsilon+E(1_{\{ \left\vert X_n \right\vert >\varepsilon \}})
$$
$X_n\xrightarrow{P}0$,则$\displaystyle \lim_{n \to \infty}P(\left\vert X_n \right\vert >\varepsilon)=0$,所以$\displaystyle \lim_{n \to \infty}E(1_{\{ \left\vert X_n \right\vert >\varepsilon \}})=0$
于是上述不等式两边同时取$n \to 0$时的极限可得
$$
\lim_{n \to \infty}E\left( \frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert } \right) \leqslant \varepsilon
$$
所以$\displaystyle \lim_{n \to \infty}E\left( \frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert } \right) =0$
$\displaystyle \lim_{n \to \infty}E\left( \frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert } \right) =0$,这里使用和书上不同的方法。根据马尔可夫不等式的一般形式,有
$$
P(\left\vert X_n \right\vert >\varepsilon)\leqslant \frac{E\left( \frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert } \right) }{\frac{\varepsilon}{1+\varepsilon}}
$$
不等式两边同时取$n \to 0$时的极限可得$\displaystyle \lim_{n \to \infty}P(\left\vert X_n \right\vert >\varepsilon)=0$,即$X_n\xrightarrow{P}0$
\end{zhongwen}
\end{proof}
\end{enumerate}
\end{document}