SchoolWork-LaTeX/数理统计/平时作业/第三周作业.tex
423A35C7 5906ac1efc 重构目录层次
0-课程笔记
1-平时作业
2-实验报告
3-期末大作业
2024-09-02 18:32:58 +08:00

92 lines
5.6 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\input{mysubpreamble}
\begin{document}
\setcounter{chapter}{5}
\setcounter{section}{3}
\section{三大抽样分布}
\begin{enumerate}
\questionandanswerSolution[2]{
$x_1,x_2, \cdots ,x_n$是来自$N(\mu,16)$的样本,问$n$多大时才能使得$P(\left\vert \bar{x}-\mu \right\vert<1 )\geqslant 0.95$成立?
}{
由于$\bar{x}\sim N(\mu,\frac{16}{n})$,根据切比雪夫不等式,
$$
P(\left\vert \bar{x}-E \bar{x} \right\vert <\varepsilon)\geqslant 1-\frac{\operatorname{Var}\bar{x}}{\varepsilon}
$$
$$
P(\left\vert \bar{x}-\mu \right\vert <1)\geqslant 1-\frac{16}{n}
$$
$$
\frac{16}{n}=0.95 \Rightarrow n=\frac{16}{0.95} = \frac{320}{19} \approx 16.8421052631579
$$
因为$n$为整数,所以$n$至少为17时才能使得$P(\left\vert \bar{x}-\mu \right\vert<1 )\geqslant 0.95$成立。
}
\questionandanswerSolution[4]{
由正态总体$N(\mu,\sigma^{2})$抽取容量为20的样本试求$P\left( 10\sigma^{2}\leqslant \displaystyle \sum_{i=1}^{20} (x_i-\mu)^{2}\leqslant 30\sigma^{2} \right) $
}{
由于$\displaystyle s^{2}=\frac{1}{19}\sum_{i=1}^{20} (x_i-\mu)^{2}$, $\displaystyle \frac{19s^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$
所以$\displaystyle \frac{1}{\sigma^{2}}\sum_{i=1}^{20} (x_i-\mu)^{2}\sim \chi^{2}(n-1)$
所以
$$
\begin{aligned}
&P\left( 10\sigma^{2}\leqslant \sum_{i=1}^{20} (x_i-\mu)^{2}\leqslant 30\sigma^{2} \right) = P\left( 10\leqslant \frac{1}{\sigma^{2}}\sum_{i=1}^{20} (x_i-\mu)^{2}\leqslant 30 \right) \\
&=\int_{10}^{30} \frac{\left( \frac{1}{2} \right) ^{\frac{20}{2}}}{\Gamma\left( \frac{20}{2}-1 \right) } y^{\frac{20}{2}}e^{-\frac{y}{2}} \mathrm{d}y = \int_{10}^{30} \frac{\left( \frac{1}{2} \right) ^{10}}{9!} y^{9}e^{-\frac{y}{2}} \mathrm{d}y \approx 0.898318281994385 \\
\end{aligned}
$$
\begin{center}
\includegraphics[width=0.2\linewidth]{imgs/2024-03-20-14-05-40.png}
\end{center}
}
\questionandanswerSolution[6]{
$x_1,x_2, \cdots ,x_n$是来自$N(\mu,1)$的样本,试确定最小的常数$c$,使得对任意的$\mu\geqslant 0$,有$P(\left\vert \bar{x} \right\vert <c)\leqslant \alpha$
}{
这题什么意思?当$\mu=0$时,当$n \to \infty$$\bar{x} \to 0$, $P(\left\vert \bar{x} \right\vert <c) \to 1$,怎么可能$P(\left\vert \bar{x} \right\vert <c)\leqslant \alpha$呢?
}
\questionandanswerProof[8]{
设随机变量$X\sim F(n,m)$,证明$\displaystyle Z=\frac{n}{m}X \left\slash \left( 1+\frac{n}{m}X \right) \right.$服从贝塔分布,并指出其参数。
}{
$Y=\dfrac{n}{m}X$,则
$$
p_{Y}(y)=\frac{\Gamma\left( \frac{m+n}{2} \right) }{\Gamma\left( \frac{m}{2} \right) \Gamma\left( \frac{n}{2} \right) } y^{\frac{m}{2}-1}(1+y)^{-\frac{m+n}{2}}
$$
$$
Z=\frac{Y}{1+Y} = 1 - \frac{1}{1+Y} \Longrightarrow Y=\frac{1}{1-Z}-1=\frac{Z}{1-Z}
$$
所以
$$
\begin{aligned}
&p_{Z}(z)=\frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})}\left( \frac{z}{1-z} \right) ^{\frac{m}{2}-1} \left( \frac{1}{1-z} \right) ^{- \frac{m+n}{2}} \\
&=\frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} \left( \frac{z}{1-z} \right) ^{\frac{m}{2}} \left( \frac{1-z}{z} \right) \left( 1-z \right) ^{\frac{m}{2}} \left( 1-z \right) ^{\frac{n}{2}} \\
&=\frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})}z^{\frac{m}{2}}(1-z)^{\frac{n}{2}}\left( \frac{1-z}{z} \right) \\
&=\frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} z^{\frac{m}{2}-1} (1-z)^{\frac{n}{2}+1} \\
\end{aligned}
$$
所以$Z$服从贝塔分布,其参数为$\dfrac{m}{2}$$\dfrac{n}{2}$
}
\questionandanswerSolution[9]{
$x_1,x_2$是来自$N(0,\sigma^{2})$的样本,试求$\displaystyle Y=\left( \frac{x_1+x_2}{x_1-x_2} \right) ^{2}$的分布。
}{
$$
Y=\left( \frac{x_1+x_2}{x_1-x_2} \right) ^{2}=\left( \frac{\frac{x_1}{x_2}+1}{\frac{x_1}{x_2}-1} \right) ^{2}=\left( 1+\frac{2}{\frac{x_1}{x_2}-1} \right) ^{2}
$$
其中$\dfrac{x_1}{x_2}$的概率密度函数为
$$
\begin{aligned}
p_{\frac{x_1}{x_2}}(t)&=\int_{-\infty}^{+\infty} \left\vert x \right\vert p(x,tx) \mathrm{d}x=\int_{-\infty}^{+\infty} \left\vert x \right\vert \phi(x)\phi(tx) \mathrm{d}x =\int_{-\infty}^{+\infty} \left\vert x \right\vert \frac{1}{\sqrt{2\pi}}e^{\frac{-\sigma^{2}x^{2}}{2}}\cdot \frac{1}{\sqrt{2\pi}}e^{\frac{-\sigma^{2}t^{2}x^{2}}{2}} \mathrm{d}x \\
&=\frac{1}{\sigma^{2}\pi}\int_{0}^{+\infty} x e^{\frac{-\sigma^{2}x^{2}}{2}(1+t^{2})} \mathrm{d}x = \frac{1}{\pi \sigma^{4} (t^{2} + 1)} \\
\end{aligned}
$$
设随机变量$Z=1+\frac{2}{\frac{x_1}{x_2}-1}$,则$\frac{x_1}{x_2}=1+\frac{2}{Z-1}$, $Y=Z^{2}$,所以
$$
p_{Z}(z)=\frac{1}{\pi\sigma^{4}\left[ \left( 1+\frac{2}{z-1} \right) ^{2}+1 \right] } = \frac{(z - 1)^{2}}{\pi \sigma^{4} ((z - 1)^{2} + (z + 1)^{2})}
$$
$$
\begin{aligned}
p_{Y}(y)&=p_{Z}(\sqrt{y})+p_{Z}(-\sqrt{y})=\frac{(\sqrt{y} - 1)^{2}}{\pi \sigma^{4} ((\sqrt{y} - 1)^{2} + (\sqrt{y} + 1)^{2})}+\frac{(\sqrt{y} - 1)^{2}}{\pi \sigma^{4} ((\sqrt{y} - 1)^{2} + (\sqrt{y} + 1)^{2})} \\
&= \frac{- 2 \sqrt{y} + y + 1}{\pi \sigma^{4} (y + 1)} \\
\end{aligned}
$$
此即为$Y$的概率密度函数。
}
\end{enumerate}
\end{document}