444 lines
13 KiB
TeX
444 lines
13 KiB
TeX
\documentclass[全部作业]{subfiles}
|
||
\input{mysubpreamble}
|
||
|
||
\begin{document}
|
||
\setcounter{chapter}{2}
|
||
\chapter{第三次作业}
|
||
\begin{enumerate}
|
||
\item \choice[1]{在 SQL 中,如果在 SELECT 语句中使用了未被聚合的属性,那么这些属性必须如何处理?
|
||
A
|
||
它们可以随意出现,不需要在 GROUP BY 中列出
|
||
|
||
|
||
|
||
B
|
||
它们必须在 GROUP BY 子句中出现
|
||
|
||
|
||
|
||
C
|
||
它们可以出现在 HAVING 子句中,而不需要在 GROUP BY 中
|
||
|
||
|
||
|
||
D
|
||
它们只能出现在 WHERE 子句中
|
||
|
||
}{2}
|
||
\item \choice[1]{WHERE和HAVING子句的主要区别是什么?
|
||
|
||
|
||
|
||
A
|
||
WHERE 子句只能用于数值列,而 HAVING 子句可以用于所有类型的列
|
||
|
||
|
||
|
||
B
|
||
WHERE 子句在数据分组之前过滤数据,而 HAVING 子句在数据分组之后过滤聚合结果
|
||
|
||
|
||
|
||
C
|
||
HAVING 子句只能在没有 GROUP BY 的情况下使用,而 WHERE 子句可以在有 GROUP BY 的情况下使用
|
||
|
||
|
||
|
||
D
|
||
WHERE 子句和 HAVING 子句的功能完全相同
|
||
|
||
}{2}
|
||
\item \choice[1]{标量子查询的主要特征是什么?
|
||
|
||
|
||
|
||
A
|
||
返回多个行和多个列的结果
|
||
|
||
|
||
|
||
B
|
||
返回一个单一的值,通常是一个属性的聚合结果
|
||
|
||
|
||
|
||
C
|
||
只能在 INSERT 语句中使用
|
||
|
||
|
||
|
||
D
|
||
只能用于 WHERE 子句中
|
||
|
||
}{2}
|
||
\item \choice[1]{在MySQL中,为什么在执行插入操作之前先执行 SELECT FROM WHERE 查询非常重要?
|
||
|
||
|
||
|
||
A
|
||
以便查看表的结构和数据类型
|
||
|
||
|
||
|
||
B
|
||
以确保要插入的数据不会导致主键或唯一性约束冲突
|
||
|
||
|
||
|
||
C
|
||
以便快速获取插入操作的执行时间
|
||
|
||
|
||
|
||
D
|
||
以便在插入后自动更新相关的其他表}{2}
|
||
\item \choice[1]{在 SQL 中,以下关于 EXISTS 和 NOT EXISTS 的描述哪项是正确的?
|
||
|
||
|
||
|
||
A
|
||
EXISTS 总是返回 TRUE,无论子查询是否返回结果。
|
||
|
||
|
||
|
||
B
|
||
EXISTS r 为 TRUE 当且仅当子查询 r 返回至少一行结果
|
||
|
||
|
||
|
||
C
|
||
NOT EXISTS r 为 TRUE 当且仅当子查询 r 返回至少一行结果。
|
||
|
||
|
||
|
||
D
|
||
EXISTS 子查询可以返回多个列,但必须返回唯一的值。}{2}
|
||
\item \choice[1]{假设有两个表格,"employees" 和 "departments",它们的结构如下。我们想要查询每个部门的员工人数。以下选项中,哪个是合适的嵌套子查询语句?
|
||
|
||
\includegraphics[width=1\linewidth]{imgs/2024-10-03-23-33-32.png}
|
||
|
||
A
|
||
\mint{SQL}|SELECT department_name, COUNT(*) FROM employees JOIN departments ON employees.department_id = departments.id;|
|
||
|
||
|
||
|
||
B
|
||
\mint{SQL}|SELECT department_name, COUNT(*) FROM employees WHERE department_id = departments.id;|
|
||
|
||
|
||
|
||
C
|
||
\mint{SQL}|SELECT department_name, (SELECT COUNT(*) FROM employees WHERE employees.department_id = departments.id) FROM departments;|
|
||
|
||
|
||
|
||
D
|
||
\mint{SQL}|SELECT department_name, COUNT(*) FROM departments JOIN employees ON employees.department_id = departments.id;|
|
||
}{3}
|
||
\begin{verification}
|
||
\begin{minted}{SQL}
|
||
drop table if exists employees, departments;
|
||
|
||
create table employees(
|
||
id int auto_increment primary key ,
|
||
name varchar(10),
|
||
department_id varchar(10)
|
||
);
|
||
create table departments(
|
||
id int auto_increment primary key ,
|
||
department_name varchar(10)
|
||
);
|
||
|
||
insert into employees(name, department_id)
|
||
values ('John', 1),
|
||
('Alice', 1),
|
||
('Tom', 2),
|
||
('Lisa', 2),
|
||
('Mike', 3);
|
||
|
||
insert into departments(department_name)
|
||
values ('HR'),
|
||
('IT'),
|
||
('Sales');
|
||
|
||
SELECT department_name, (SELECT COUNT(*) FROM employees WHERE employees.department_id = departments.id) FROM departments;
|
||
\end{minted}
|
||
\begin{csv}
|
||
,department_name,(SELECT ...)
|
||
1,HR,2
|
||
2,IT,2
|
||
3,Sales,1
|
||
\end{csv}
|
||
\end{verification}
|
||
|
||
\questionandanswer[]{
|
||
count(1)、count(*) 与 count(列名) 的区别?
|
||
}{
|
||
在执行效果上,count(1)和count(*)都会把空值算入结果,而count(列名)会忽略空值。
|
||
|
||
在执行效率上,count(主键列名) > count(1) > count(非主键列名)。
|
||
}
|
||
|
||
\questionandanswer[]{
|
||
Mysql中exist和in的区别?
|
||
}{
|
||
参考
|
||
\url{https://blog.csdn.net/jinjiniao1/article/details/92666614}\\
|
||
\url{https://cloud.tencent.com/developer/article/1144244}\\
|
||
\url{https://cloud.tencent.com/developer/article/1144253}
|
||
|
||
那么可以考虑以下两条语句:
|
||
\mint{SQL}|select * from A where exists (select * from B where B.id = A.id);|
|
||
\mint{SQL}|select * from A where A.id in (select id from B);|
|
||
|
||
以下称A为内表,B为外表,两条语句中括号内的内容为子查询结果。
|
||
|
||
根据参考文章可知,exists语句的执行过程是先把内表的数据全部取出来,然后对每一条数据判断是否满足子查询的条件,只用到了子查询的索引;而in语句的执行过程是先将子查询结果查询出来,再和内表连接,用到了内表和外表的索引。
|
||
|
||
所以当子查询结果的数据较多,外表的数据较少时,exists有Block嵌套循环优化(目前还不理解),查询效率更高;而子查询结果的数据较少,外表的数据较多时,in由于能用到外表的索引,所以效率更高。
|
||
}
|
||
|
||
\questionandanswer[]{
|
||
OrderItems 表示订单商品表,含有字段订单号:order_num,订单价格:item_price;Orders 表代表订单信息表,含有顾客 id:cust_id 和订单号:order_num。使用子查询,返回购买价格为 10 美元或以上产品的顾客列表,结果无需排序。
|
||
|
||
\includegraphics[width=0.4\linewidth]{imgs/2024-10-04-09-59-11.png}
|
||
\includegraphics[width=0.4\linewidth]{imgs/2024-10-04-10-04-16.png}
|
||
}{}
|
||
{
|
||
\begin{minted}{SQL}
|
||
select cust_id from Orders where order_num in (
|
||
select order_num from OrderItems where item_price >= 10
|
||
);
|
||
\end{minted}
|
||
}
|
||
\begin{verification}
|
||
\begin{minted}{SQL}
|
||
drop table if exists orderitems, orders;
|
||
|
||
create table if not exists OrderItems
|
||
(
|
||
order_num varchar(10),
|
||
item_price int
|
||
);
|
||
insert into OrderItems
|
||
values ('a1', 10),
|
||
('a2', 1),
|
||
('a2', 1),
|
||
('a2', 1),
|
||
('a4', 2),
|
||
('a5', 5),
|
||
('a2', 1),
|
||
('a7', 7);
|
||
|
||
create table if not exists Orders
|
||
(
|
||
order_num varchar(10),
|
||
cust_id varchar(10)
|
||
);
|
||
|
||
insert into Orders
|
||
values ('a1', 'cust10'),
|
||
('a2', 'cust1'),
|
||
('a2', 'cust1'),
|
||
('a4', 'cust2'),
|
||
('a5', 'cust5'),
|
||
('a2', 'cust4'),
|
||
('a7', 'cust7');
|
||
|
||
select cust_id
|
||
from Orders
|
||
where order_num in (select order_num
|
||
from OrderItems
|
||
where item_price >= 10);
|
||
\end{minted}
|
||
|
||
\begin{csv}
|
||
,cust_id
|
||
1,cust10
|
||
\end{csv}
|
||
|
||
\end{verification}
|
||
|
||
\questionandanswer[]{
|
||
表 OrderItems 代表订单商品信息表,prod_id 为产品 id;Orders 表代表订单表有 cust_id 代表顾客 id 和订单日期 order_date。编写SQL语句,使用子查询来确定哪些订单(在 OrderItems 中)购买了 prod_id 为 "BR01" 的产品,然后从 Orders 表中返回每个产品对应的顾客 ID(cust_id)和订单日期(order_date),按订购日期对结果进行升序排序。
|
||
|
||
\includegraphics[width=0.5\linewidth]{imgs/2024-10-04-10-27-04.png}
|
||
}{}
|
||
{\kaishu
|
||
由于要使用子查询,这里不考虑使用连接,使用exists和in可以分别写出如下SQL语句,其功能一样:
|
||
\begin{minted}{SQL}
|
||
select cust_id, order_date from Orders where exists(
|
||
select * from OrderItems where prod_id='BR01' and Orders.order_num = OrderItems.order_num
|
||
) order by order_date;
|
||
|
||
select cust_id, order_date from Orders where order_num in (
|
||
select order_num from OrderItems where prod_id='BR01'
|
||
) order by order_date;
|
||
\end{minted}
|
||
}
|
||
\begin{verification}
|
||
\begin{minted}{SQL}
|
||
drop table if exists OrderItems;
|
||
create table if not exists OrderItems(
|
||
prod_id varchar(10),
|
||
order_num varchar(10)
|
||
);
|
||
|
||
insert into OrderItems
|
||
values ('BR01', 'a0001'),
|
||
('BR01', 'a0002'),
|
||
('BR02', 'a0003'),
|
||
('BR02', 'a0013');
|
||
|
||
drop table if exists Orders;
|
||
create table if not exists Orders(
|
||
order_num varchar(10),
|
||
cust_id varchar(10),
|
||
order_date datetime
|
||
);
|
||
|
||
insert into Orders
|
||
values ('a0001', 'cust10', '2022-01-01 00:00:00'),
|
||
('a0002', 'cust1', '2022-01-01 00:01:00'),
|
||
('a0003', 'cust1', '2022-01-02 00:00:00'),
|
||
('a0013', 'cust2', '2022-01-01 00:20:00');
|
||
\end{minted}
|
||
以下三种不同语句分别使用exists、in和连接,可以得到相同结果。
|
||
\begin{minted}{SQL}
|
||
select cust_id, order_date from Orders where exists(
|
||
select * from OrderItems where prod_id='BR01' and Orders.order_num = OrderItems.order_num
|
||
) order by order_date;
|
||
|
||
select cust_id, order_date from Orders where order_num in (
|
||
select order_num from OrderItems where prod_id='BR01'
|
||
) order by order_date;
|
||
|
||
select cust_id, order_date from Orders natural join OrderItems where prod_id='BR01' order by order_date;
|
||
\end{minted}
|
||
\begin{csv}
|
||
,cust_id,order_date
|
||
1,cust10,2022-01-01 00:00:00
|
||
2,cust1,2022-01-01 00:01:00
|
||
\end{csv}
|
||
\end{verification}
|
||
\questionandanswer[]{
|
||
有一个顾客ID列表,其中包含他们已订购的总金额。OrderItems 表代表订单信息,OrderItems 表有订单号:order_num 和商品售出价格:item_price、商品数量:quantity。编写SQL语句,返回顾客 ID(Orders 表中的 cust_id),并使用子查询返回 total_ordered 每个顾客的订单总数,将结果按金额从大到小排序。
|
||
|
||
\includegraphics[width=0.5\linewidth]{imgs/2024-10-04-10-27-32.png}
|
||
}{
|
||
注意返回的是订单总数,但是要按照金额从大到小排序。
|
||
}
|
||
{
|
||
\begin{minted}{SQL}
|
||
select cust_id, count(*) as total_ordered
|
||
from Orders
|
||
join (select order_num, sum(item_price * quantity) as total
|
||
from OrderItems
|
||
group by order_num) as a on Orders.order_num = a.order_num
|
||
group by cust_id
|
||
order by sum(total) desc;
|
||
\end{minted}
|
||
}
|
||
\begin{verification}
|
||
\begin{minted}{SQL}
|
||
drop table if exists orderitems, orders;
|
||
|
||
create table OrderItems(
|
||
order_num varchar(10),
|
||
item_price int,
|
||
quantity int
|
||
);
|
||
create table Orders(
|
||
order_num varchar(10),
|
||
cust_id varchar(10)
|
||
);
|
||
|
||
insert into OrderItems
|
||
values ('a0001', 10, 105),
|
||
('a0002', 1,1100),
|
||
('a0002', 1, 200),
|
||
('a0013', 2, 1121),
|
||
('a0003', 5, 10),
|
||
('a0003', 1, 19),
|
||
('a0003', 7, 5);
|
||
|
||
insert into Orders
|
||
values ('a0001', 'cust10'),
|
||
('a0002', 'cust1'),
|
||
('a0003', 'cust1'),
|
||
('a0013', 'cust2');
|
||
|
||
select cust_id, count(*) as total_ordered
|
||
from Orders
|
||
join (select order_num, sum(item_price * quantity) as total
|
||
from OrderItems
|
||
group by order_num) as a on Orders.order_num = a.order_num
|
||
group by cust_id
|
||
order by sum(total) desc;
|
||
\end{minted}
|
||
\begin{csv}
|
||
,cust_id,total_ordered
|
||
1,cust2,1
|
||
2,cust1,2
|
||
3,cust10,1
|
||
\end{csv}
|
||
\end{verification}
|
||
\questionandanswer[]{
|
||
Products 表中检索所有的产品名称:prod_name、产品 id:prod_id;OrderItems 代表订单商品表,订单产品:prod_id、售出数量:quantity。编写 SQL 语句,从 Products 表中检索所有的产品名称(prod_name),以及名为 quant_sold 的计算列,其中包含所售产品的总数(在 OrderItems 表上使用子查询和 SUM(quantity) 检索)。
|
||
|
||
\includegraphics[width=0.4\linewidth]{imgs/2024-10-04-10-27-50.png}
|
||
\includegraphics[width=0.4\linewidth]{imgs/2024-10-04-10-28-03.png}
|
||
}{}
|
||
{\kaishu
|
||
\begin{minted}{SQL}
|
||
select Products.prod_name, a.quant_sold as quant_sold
|
||
from Products
|
||
natural join (select prod_id, sum(quantity) as quant_sold
|
||
from OrderItems
|
||
group by prod_id) as a;
|
||
\end{minted}
|
||
}
|
||
\begin{verification}
|
||
\begin{minted}{SQL}
|
||
drop table if exists Products, OrderItems;
|
||
|
||
create table Products (
|
||
prod_id varchar(10),
|
||
prod_name varchar(10)
|
||
);
|
||
create table OrderItems (
|
||
prod_id varchar(10),
|
||
quantity int
|
||
);
|
||
|
||
insert into Products
|
||
values ('a0001', 'egg'),
|
||
('a0002', 'sockets'),
|
||
('a0013', 'coffee'),
|
||
('a0003', 'cola');
|
||
|
||
insert into OrderItems
|
||
values ('a0001', 105),
|
||
('a0002', 1100),
|
||
('a0002', 200),
|
||
('a0013', 1121),
|
||
('a0003', 10),
|
||
('a0003', 19),
|
||
('a0003', 5);
|
||
|
||
select Products.prod_name, a.quant_sold as quant_sold
|
||
from Products
|
||
natural join (select prod_id, sum(quantity) as quant_sold
|
||
from OrderItems
|
||
group by prod_id) as a;
|
||
\end{minted}
|
||
\begin{csv}
|
||
,prod_name,quant_sold
|
||
1,egg,105
|
||
2,sockets,1300
|
||
3,coffee,1121
|
||
4,cola,34
|
||
\end{csv}
|
||
\end{verification}
|
||
\end{enumerate}
|
||
\end{document} |