79 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
| \documentclass[全部作业]{subfiles}
 | ||
| \pagestyle{fancyplain}
 | ||
| \fancyhead{}
 | ||
| \fancyhead[C]{\mysignature}
 | ||
| \setcounter{chapter}{4}
 | ||
| \setcounter{section}{1}
 | ||
| 
 | ||
| \begin{document}
 | ||
|     \section{谓词公式的等值演算和前束范式}
 | ||
|     \begin{enumerate}
 | ||
|         \item 指出谓词公式$\forall x\forall y(P(x,y)\lor Q(y,z))\land \exists xR(x,y)$的指导变元、量词的辖域、约束变元和自由变元。
 | ||
|         \begin{figure}[h]
 | ||
|             \centering
 | ||
|             \includexopp[0.8]{7.1.1}
 | ||
|         \end{figure}
 | ||
|         \item 求谓词公式$\forall x \forall y (P(x,y) \leftrightarrow Q(x,y)) \to \exists  x \forall  y R(x,y)$的前束范式。
 | ||
|         \begin{proof}[解]
 | ||
|         \begin{zhongwen}
 | ||
|             $$
 | ||
|             \begin{aligned}
 | ||
|             &\forall x \forall y(P(x,y) \leftrightarrow Q(x,y)) \to \exists x \forall y R(x, y) \\
 | ||
|             =&\forall x \forall y(P(x,y)\leftrightarrow Q(x,y)) \to  \exists z \forall uR(z, u) & (换名)  \\
 | ||
|             =&\lnot (\forall x\forall y(P(x,y)\leftrightarrow Q(x,y)))\lor \exists z\forall uR(z,u) & (消去\to ) \\
 | ||
|             =&\exists x\exists y(\lnot (P(x,y)\leftrightarrow Q(x,y)))\lor \exists z\forall u R(z,u) & (内移\lnot )\\
 | ||
|             =&\exists x\exists y\exists z\forall u(\lnot (P(x,y)\leftrightarrow Q(x,y))\lor R(z,u)) & (量词前移) \\
 | ||
|             =&\exists x\exists y\exists z\forall u((P(x,y)\leftrightarrow Q(x,y))\to R(z,u)) & (恢复\to (非必要)) \\
 | ||
|             \end{aligned}
 | ||
|             $$
 | ||
|         \end{zhongwen}
 | ||
|         \end{proof}
 | ||
|     \end{enumerate}
 | ||
|     \section{一阶逻辑的推理理论}
 | ||
|     \begin{enumerate}
 | ||
|         \item 构造$\forall x(P(x)\lor Q(x)), \forall x(Q(x) \to \lnot R(x)), \forall xR(x) \Rightarrow \forall xP(x)$的形式证明。
 | ||
|         \begin{proof}
 | ||
|         \begin{zhongwen}
 | ||
|             $$设y为任意的个体变量$$
 | ||
|             \begin{enumerate}[label=\mycircle{\arabic{enumii}},leftmargin=\linewidth/4,rightmargin=\linewidth/4]
 | ||
|                 \item $\forall x(P(x)\lor Q(x))$\hfill 前提引入
 | ||
|                 \item $P(y)\lor Q(y)$\hfill \mycircle{1} US规则
 | ||
|                 \item $\forall x(Q(x)\to \lnot R(x))$\hfill 前提引入
 | ||
|                 \item $Q(y)\to \lnot R(y)$\hfill  \mycircle{3} US规则
 | ||
|                 \item $\forall xR(x)$ \hfill 前提引入
 | ||
|                 \item $R(y)$\hfill \mycircle{5} US规则
 | ||
|                 \item $\lnot Q(y)$\hfill \mycircle{4} \mycircle{6} 拒取式
 | ||
|                 \item $P(y)$ \hfill  \mycircle{2} \mycircle{7} 析取三段论
 | ||
|                 \item $\forall xP(x)$\hfill \mycircle{8} UG规则
 | ||
|             \end{enumerate}
 | ||
|         \end{zhongwen}
 | ||
|         \end{proof}
 | ||
|         \item 证明下面的推理:\\
 | ||
|         “每个科研工作者都是努力工作的。每个努力工作而又聪明的人都取得事业的成功。某个人是科研工作者并且聪明。所以,某人事业取得成功。”
 | ||
|         \begin{zhongwen}
 | ||
|             $$
 | ||
|             \begin{aligned}
 | ||
|             &设P(x): x是科研工作者,Q(x): x努力工作,R(x): x聪明,S(x): x取得事业的成功, \\
 | ||
|             &e: 某个人,则需要证明: \\
 | ||
|             &\forall x(P(x)\to Q(x)), \forall x (Q(x)\land R(x)\to S(x)), P(e)\land R(e) \Rightarrow S(e) \\
 | ||
|             \end{aligned}
 | ||
|             $$
 | ||
|         \end{zhongwen}
 | ||
|         \begin{proof}
 | ||
|         \begin{zhongwen}
 | ||
|             \begin{enumerate}[label=\mycircle{\arabic{enumii}},leftmargin=\linewidth/4,rightmargin=\linewidth/4]
 | ||
|                 \item $P(e)\land R(e)$\hfill 前提引入
 | ||
|                 \item $P(e)$\hfill \mycircle{1} 化简
 | ||
|                 \item $R(e)$\hfill \mycircle{1} 化简
 | ||
|                 \item $\forall x(P(x)\to Q(x))$\hfill 前提引入
 | ||
|                 \item $P(e)\to Q(e)$\hfill \mycircle{4} US规则
 | ||
|                 \item $Q(e)$\hfill \mycircle{2} \mycircle{5} 假言推理
 | ||
|                 \item $Q(e)\land R(e)$\hfill \mycircle{3} \mycircle{6} 合取引入
 | ||
|                 \item $\forall x(Q(x)\land R(x)\to S(x))$\hfill 前提引入
 | ||
|                 \item $Q(e)\land R(e)\to S(e)$\hfill  \mycircle{8} US规则
 | ||
|                 \item $S(e)$\hfill \mycircle{7} \mycircle{9} 假言推理
 | ||
|             \end{enumerate}
 | ||
|         \end{zhongwen}
 | ||
|         \end{proof}
 | ||
|     \end{enumerate}
 | ||
| \end{document} |