SchoolWork-LaTeX/概率论/单元作业4.tex

228 lines
8.4 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\begin{document}
\chapter{单元作业4}
\begin{enumerate}
\item 若二维离散型随机变量$(X,Y)$有联合分布列如下:
\begin{center}
% \renewcommand\arraystretch{1.5}
\begin{tabular}{c|ccc}
% \hline
\diagbox{$X$}{$Y$} & $0$ & $1$ & $2$ \\
\hline
$0$ & $\frac{1}{2}$ & $\frac{1}{8}$ & $\frac{1}{4}$ \\
% \hline
$1$ & $\frac{1}{16}$ & $\frac{1}{16}$ & $0$ \\
% \hline
\end{tabular}
\end{center}
$X$$Y$的边际分布列。
\begin{proof}[解]
\begin{zhongwen}
$X$$Y$的边际分布列分别为
\begin{center}
\renewcommand\arraystretch{1.5}
\begin{tabular}{c|cc}
$X$ & $0$ & $1$ \\
\hline
$P$ & \makecell{$\dfrac{7}{8}$} & $\dfrac{1}{8}$ \\
\end{tabular} \qquad
\begin{tabular}{c|ccc}
$Y$ & $0$ & $1$ & $2$ \\
\hline
$P$ & $\dfrac{9}{16}$ & $\dfrac{3}{16}$ & $\dfrac{1}{4}$ \\
\end{tabular}
\end{center}
\end{zhongwen}
\end{proof}
\item 设随机变量$(X,Y)$的概率密度函数为
$$
p(x,y)=\begin{cases}
3x,\quad & \text{}0<y<x<1; \\
0,\quad & \text{其他}. \\
\end{cases}
$$
$X$$Y$的边际概率密度函数,并判断$X$$Y$是否互相独立。
\begin{proof}[解]
\begin{zhongwen}
\begin{window}[0,r,
{\includexopp[0.3]{4.2.1}},
{}]
$$
\begin{aligned}
p_{X}(x)&=\int_{-\infty}^{+\infty} p(x,y) \mathrm{d}y=\begin{cases}
\int_{0}^{x} 3x \mathrm{d}y,\quad & 0\leqslant x\leqslant 1 \\
0,\quad & x<0 \text{} x>1 \\
\end{cases}\\
&=\begin{cases}
3x^{2},\quad & 0\leqslant x\leqslant 1 \\
0,\quad & x<0 或x>1 \\
\end{cases}
\end{aligned}
$$
$$
\begin{aligned}
p_{Y}(y)&=\int_{-\infty}^{+\infty} p(x,y) \mathrm{d}x=\begin{cases}
\int_{y}^{1} 3x \mathrm{d}x, \quad & 0\leqslant y\leqslant 1 \\
0,\quad & x<0 或 x>1 \\
\end{cases}\\
&=\begin{cases}
\frac{3}{2}-\frac{3}{2}y^{2},\quad & 0\leqslant y\leqslant 1 \\
0,\quad & y<0 或 y>1 \\
\end{cases}
\end{aligned}
$$
\end{window}
\noindent$p(1,1)=3,p_{X}(1)=3,p_{Y}(1)=0$,于是$p(1,1)\neq p_{X}(1)\cdot p_{Y}(1)$,所以$X$$Y$互相不独立。
\end{zhongwen}
\end{proof}
\item 设随机变量$X$$Y$相互独立,且$X$服从均匀分布$U(0,1)$$Y$服从指数分布$\operatorname{Exp}(1)$。求
\begin{enumerate}
\item $(X,Y)$的联合概率密度函数$p(x,y)$
\begin{proof}[解]
\begin{zhongwen}
$$
p_{X}(x)=\begin{cases}
1,\quad & x\in [0,1] \\
0,\quad & x<0 或 x>1 \\
\end{cases}\quad p_{Y}(y)=\begin{cases}
e^{-y},\quad & y\geqslant 0 \\
0,\quad & y< 0 \\
\end{cases}
$$
$$
p(x,y)=\begin{cases}
e^{-y},\quad & x\in [0,1], y\geqslant 0 \\
0,\quad & 其他 \\
\end{cases}
$$
\end{zhongwen}
\end{proof}
\item 概率$P(X+Y\leqslant 1)$
\begin{proof}[解]
\begin{zhongwen}
$Z=X+Y$,则随机变量$Z$的概率密度函数为
$$
p_{Z}(z)=\int_{-\infty}^{+\infty} p_{X}(x)p_{Y}(z-x) \mathrm{d}x=\begin{cases}
\int_{0}^{1} e^{x-z} \mathrm{d}x ,\quad & z>1\\
\int_{0}^{z} e^{x-z} \mathrm{d}x,\quad & 0\leqslant z\leqslant 1 \\
0,\quad & z<0 \\
\end{cases}=\begin{cases}
e^{1-z}-e^{-z},\quad & z>1 \\
1-e^{-z},\quad & 0\leqslant z\leqslant 1 \\
0,\quad & z<0 \\
\end{cases}
$$
所以
$$
P(X+Y\leqslant 1)=\int_{-\infty}^{1} p_{Z}(z) \mathrm{d}z=\int_{0}^{1} (1-e^{-z}) \mathrm{d}z=1+(\frac{1}{e}-1)=\frac{1}{e}
$$
\end{zhongwen}
\end{proof}
\item 概率$P(X\leqslant Y)$
\begin{proof}[解]
\begin{zhongwen}
令随机变量$Z=X-Y$,则$Z$的概率密度函数为
$$
p_{Z}(z)=\int_{-\infty}^{+\infty} p(x,x-z) \mathrm{d}x=\begin{cases}
0,\quad & z>1 \\
\int_{z}^{1} e^{z-x} \mathrm{d}x,\quad & 0\leqslant z\leqslant 1 \\
\int_{0}^{1} e^{z-x} \mathrm{d}x,\quad & z<0 \\
\end{cases}=\begin{cases}
0,\quad & z>1 \\
1-e^{z-1},\quad & 0\leqslant z\leqslant 1 \\
e^{z}-e^{z-1},\quad & z<0 \\
\end{cases}
$$
所以
$$
P(X\leqslant Y)=P(X-Y\leqslant 0)=\int_{-\infty}^{0} (e^{z}-e^{z-1}) \mathrm{d}z=1-\frac{1}{e}
$$
\end{zhongwen}
\end{proof}
\end{enumerate}
\item 设随机变量$(X,Y)$的概率密度函数为
$$
p(x,y)=\begin{cases}
Ae^{-(3x+2y)},\quad & x>0,y>0; \\
0,\quad & \text{otherwise}. \\
\end{cases}
$$
求:
\begin{enumerate}
\item 常数$A$的值;
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x,y) \mathrm{d}x \mathrm{d}y=\int_{0}^{+\infty} \int_{0}^{+\infty} Ae^{-(3x+2y)} \mathrm{d}x \mathrm{d}y=\int_{0}^{+\infty} \left. -\frac{1}{3}Ae^{-(3x+2y)} \right|_{0}^{+\infty} \mathrm{d}y\\
=&\int_{0}^{+\infty} \frac{1}{3}Ae^{-2y} \mathrm{d}y=\left. -\frac{1}{6}Ae^{-2y} \right|_{0}^{+\infty}=\frac{1}{6}A=1
\end{aligned}
$$
所以常数$A$的值为$6$
\end{zhongwen}
\end{proof}
\item 分布函数$F(x,y)$
\begin{proof}[解]
\begin{zhongwen}
由题意可知,当$x\leqslant 0$$y\leqslant 0$时,$F(x,y)=0$
$x>0,y>0$时,$
\displaystyle F(x,y)
=\int_{0}^{y} \int_{0}^{x} 6e^{-(3u+2v)} \mathrm{d}u \mathrm{d}v
=\int_{0}^{y} \left. -2e^{-(3u+2v)} \right|_{0}^{x} \mathrm{d}v
=\int_{0}^{y} \left(2e^{-2v}-2e^{-(3x+2v)}\right) \mathrm{d}v
=\left. -e^{-2v} \right|_{0}^{y}+\left. e^{-(3x+2v)} \right|_{0}^{y}
=-e^{-2y}+1+e^{-(3x+2y)}-e^{-3x}
=e^{-(3x+2y)}-e^{-3x}-e^{-2y}+1
$
所以
$$
\begin{aligned}
F(x,y)=\begin{cases}
e^{-(3x+2y)}-e^{-3x}-e^{-2y}+1,\quad & x>0,y>0 \\
0,\quad & \text{otherwise} \\
\end{cases}
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 概率$P(-2<X\leqslant 2,-3<Y\leqslant 3)$
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&P(-2<X\leqslant 2,-3<Y\leqslant 3)=P(X\leqslant 2,Y\leqslant 3)=F(2,3)\\
=&e^{-(3\times 2+2\times 3)}-e^{-3\times 2}-e^{-2\times 3}+1 \\
=&1 +e^{-12} - 2e^{-6}
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\end{enumerate}
\end{enumerate}
\end{document}