SchoolWork-LaTeX/概率论/单元作业1.tex

159 lines
6.7 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\begin{document}
\chapter{单元作业1}
\begin{enumerate}
\item 证明$P(AB)\ge P(A)+P(B)-1$
\begin{proof}
\begin{zhongwen}
$$
\begin{aligned}
&\Omega 表示全集则A \in \Omega, B \in \Omega \\
&\therefore A\cup B\in \Omega \\
&\therefore P(A\cup B)\le P(\Omega) \\
&\therefore P(A)+P(B)-P(AB)\le 1 \\
&\therefore P(AB)\ge P(A)+P(B)-1 \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 一副标准扑克牌52张一张一张轮流分发给给4名游戏者求每人恰好得到1张A的概率。
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&设A表示事件“每人恰好得到一张A”由盒子模型可知 \\
&P(A) = \frac{\mathrm{P}_{4}^{4}}{4^{4}} = \frac{4!}{256} = \frac{3}{32} \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item$P(A)=0.7,P(A-B)=0.3$,求概率$P(\overline{AB})$
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
P(\overline{AB})&=1-P(AB)=1-P(A-(A-B)) \\
&=1-(P(A)-P(A-B))=1-(0.7-0.3)=0.6 \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item$P(A)=a,P(B)=b,P(A\cup B)=c$,求概率$P(\overline{\bar{A}\cup \bar{B}})$
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
P(\overline{\bar{A}\cup \bar{B}})=P(A\cap B)=P(A)+P(B)-P(A\cup B)=a+b-c
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item$A,B\in \mathcal{F}$,证明$P(A)=P(AB)+P(A \bar{B}), \quad P(A\triangle B)=P(A)+P(B)-2P(AB)$
\begin{proof}
\begin{zhongwen}
$$
\begin{aligned}
&\Omega 表示全集 \\
P(A)&=P(A\cap \Omega)=P(A\cap (B\cup \bar{B})) \\
&=P(A(B+\bar{B}))=P(AB+A \bar{B})=P(AB)+P(A \bar{B}) \\
P(A \triangle B)&=P((A\backslash B)\cup (B\backslash A))=P((A-(AB))+(B-(AB))) \\
&=P(A)-P(AB)+P(B)-P(AB)=P(A)+P(B)-2P(AB) \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item$\Omega =(-\infty, \infty), A=\{ x\in \Omega: 1\le x\le 5 \}, B=\{ x\in \Omega:3<x<7 \},C=\{ x\in \Omega:x<0 \}$,求下列事件$\bar{A}, A\cup B,B \bar{C}, \bar{A}\cap \bar{B}\cap \bar{C}, (A\cup B)C$
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&\bar{A}=\{ x\in \Omega: x < 1 或x>5 \} \\
&A\cup B=\{ x\in \Omega: 1\le x<7 \} \\
&B \bar{C}=\{ x\in \Omega:3<x<7 \} \\
&\bar{A}\cap \bar{B}\cap \bar{C}=\{ x\in \Omega:0\le x<1或x\ge 7 \} \\
&(A\cup B)C=\varnothing \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item\textit{I}是任意指标集,$\{ A_i, i\in I \}$是一事件类,证明$\overline{\displaystyle \bigcup_{i \in I} A_i}=\displaystyle \bigcap_{i \in I} \overline{A_i}$, \quad $\overline{\displaystyle \bigcap_{i \in I} A_i}=\displaystyle \bigcup_{i \in I} \overline{A_i}$
\begin{proof}
\begin{zhongwen}
$$
\begin{aligned}
&\forall x\in \overline{\bigcup_{i \in I} A_i},\ 即x \notin \bigcup_{i \in I} A_i, 即 \\
&\forall i \in I,x \notin A_i, \\
&\therefore \forall i \in I, x\in \overline{A_i} \\
&\therefore x\in \bigcap_{i \in I} \overline{A_i} \\
\end{aligned}
$$
\begin{equation}
\therefore \overline{\bigcup_{i \in I} A_i} \subseteq \bigcap_{i \in I} \overline{A_i} \tag{1}\label{eq:7.1}
\end{equation}
$$
\begin{aligned}
&\forall x\in \bigcap_{i \in I} \overline{A_i}, 即 \\
&\forall i \in I,x\in \overline{A_i} \\
&\therefore \forall i\in I,x \notin A_i \\
&\therefore x\notin \bigcup_{i \in I} A_i \\
&\therefore x\in \overline{\bigcup_{i \in I} A_i} \\
\end{aligned}
$$
\begin{equation}
\therefore \bigcap_{i \in I} \overline{A_i} \subseteq \overline{\bigcup_{i \in I} A_i} \tag{2}\label{eq:7.2}
\end{equation}
$$
\begin{aligned}
&\eqref{eq:7.1}\eqref{eq:7.2}可知,\overline{\bigcup_{i \in I} A_i}=\bigcap_{i \in I} \overline{A_i} \\
&由对偶公式可知, \overline{\overline{\bigcup_{i \in I} A_i}}=\overline{\bigcap_{i \in I} \overline{A_i}} \\
&\therefore \overline{\bigcap_{i \in I} \overline{A_i}}=\bigcup_{i \in I} A_i \\
&\because \{ \overline{A_i}|i\in I \}也是一事件类 \\
&\therefore\overline{A_i}替换为A_i后可得 \\
&\overline{\bigcap_{i \in I} A_i}=\bigcup_{i \in I} \overline{A_i} \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 从装有10双不同尺码或不同样式的皮鞋的箱子中, 任取4只, 求恰能成1双的概率。
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&设A表示事件“恰能成1双”B表示事件“恰能成2双”C表示事件“不能成双” \\
&则由不返回抽样模型可知: \\
P(A)&=1-P(B)-P(C)=1-\frac{\mathrm{C}_{10}^{2}}{\mathrm{C}_{20}^{4}}-\frac{\mathrm{C}_{20}^{1}\mathrm{C}_{18}^{1}\mathrm{C}_{16}^{1}\mathrm{C}_{14}^{1}}{\mathrm{P}_{20}^{4}} \\
&=1-\frac{\binom{10}{2}}{\binom{20}{4}}-\frac{\binom{20}{1}\binom{18}{1}\binom{16}{1}\binom{14}{1}}{\binom{20}{4}\times 4!} = \frac{96}{323} \approx 0.297213622291022 \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 现从有15名男生和30名女生的班级中随机挑选10名同学参加某项课外活动, 求在被挑选的同学中恰好有3名男生的概率。
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&设A表示事件“在被挑选的同学中恰好有3名男生”,则 \\
&P(A)=\frac{\mathrm{C}_{15}^{3}\mathrm{C}_{30}^{7}}{\mathrm{C}_{45}^{10}}=\frac{\binom{15}{3}\binom{30}{7}}{\binom{45}{10}} = \frac{3958500}{13633279} \approx 0.290355680390609 \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item$\mathcal{F}$$\Omega$上的事件域,$A,B\in \mathcal{F}$,证明$A\cup B,AB\in \mathcal{F}$
\begin{proof}
\begin{zhongwen}
$$
\begin{aligned}
&设A_1=A,A_2=B,\forall n>2,A_n=\varnothing \\
&\because \mathcal{F}\Omega上的事件域,\forall n\geqslant 1,A_n\in \mathcal{F} \\
&\therefore \bigcup_{n=1}^{\infty}A_n=A\cup B\in \mathcal{F} \\
&\because A,B\in \mathcal{F} \\
&\therefore \bar{A},\bar{B}\in \mathcal{F} \\
&同理,\bar{A}\cup \bar{B}\in \mathcal{F} \\
&\therefore \overline{\bar{A}\cup \bar{B}}=AB\in \mathcal{F} \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\end{enumerate}
\end{document}