SchoolWork-LaTeX/概率论/平时作业/单元作业3.tex
423A35C7 5906ac1efc 重构目录层次
0-课程笔记
1-平时作业
2-实验报告
3-期末大作业
2024-09-02 18:32:58 +08:00

168 lines
7.0 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\begin{document}
\chapter{单元作业3}
\begin{enumerate}
\item 试用随机变量$X$的分布函数$F_{X}(x)$表示随机变量$-\min(X,0)$的分布函数。
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
% F_{-\min(X,0)}(x)=-\min(F_{X}(x),0)
F_{-\min(X,0)}(x) & = P(-\min(X,0)\leqslant x) \\
& = P(\min(X,0)\geqslant -x) \\
& = P(X\geqslant -x, 0\geqslant -x) \\
& = P(X\geqslant -x, x\geqslant 0) \\
&=\begin{cases} P(X\geqslant -x), & x\geqslant 0 \\ 0, & x<0 \end{cases} \\
&=\begin{cases} 1-P(X<-x), & x\geqslant 0 \\ 0, & x<0 \end{cases} \\
&=\begin{cases} 1-F_{X}(-x-0), & x\geqslant 0 \\ 0, & x<0 \end{cases} \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 设随机变量$X$等可能地取值0和1, 求$X$的分布函数。
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
F_{X}(x)=\begin{cases} 0, & x<0 \\ \frac{1}{2}, & 0\leqslant x<1 \\ 1, & x\geqslant 1 \end{cases}
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 设离散型随机变量X的分布列为$\displaystyle P(X=k)=\frac{c}{2^{k}}, \quad k=0, 1, 2, \ldots $,求常数$c$的值。
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&\because \sum_{k = 0}^{\infty}\frac{c}{2^{k}}=1 \\
&\therefore c \sum_{k=0}^{\infty}\frac{1}{2^{k}}=c \frac{1}{1-\frac{1}{2}}=2c=1 \\
&\therefore c=\frac{1}{2} \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 设随机变量$X$的概率密度函数为$p(x)=\begin{cases} ce^{-\sqrt{x}}, & x>0 \\ 0, & x\leqslant 0 \end{cases}$,求常数$c$
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&\because \int_{-\infty}^{+\infty} p(x) \mathrm{d}x=1 \\
&\therefore \int_{0}^{+\infty} ce^{-\sqrt{x}} \mathrm{d}x=c \int_{0}^{+\infty} e^{-\sqrt{x}} \mathrm{d}x = 2c=1 \\
&\therefore c=\frac{1}{2} \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item$X\sim N(10,4)$,求概率$P(6<X\leqslant 9)$$P(7\leqslant X<12)$
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&\mu =10,\sigma ^{2}=4,\sigma =2 \\
&\therefore \frac{x-10}{2}\sim N(0,1) \\
P(6<X\leqslant 9) & = P(\frac{6-10}{2}<\frac{X-10}{2}\leqslant \frac{9-10}{2}) \\
& = \Phi (\frac{9-10}{2})-\Phi (\frac{6-10}{2}) \\
& = \Phi (-0.5)-\Phi (-2) \\
& = \Phi (2)-\Phi (0.5) \\
& \approx 0.9772-0.6915 \\
& = 0.2857 \\
P(7\leqslant X<12) & = P(\frac{7-10}{2}\leqslant \frac{X-10}{2}< \frac{12-10}{2}) \\
& = \Phi (\frac{12-10}{2}-0)-\Phi (\frac{7-10}{2}-0) \\
& = \Phi (1)-\Phi (-1.5) \\
& = \Phi (1)-(1-\Phi (1.5)) \\
& \approx 0.8413-(1-0.9332) \\
& = 0.7745 \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item$X\sim \operatorname{Exp} (\lambda )$,求$\lambda $使得$P(X>1)=2P(X>2)$
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
由P(X>1)&=2P(X>2)可知: \\
\int_{1}^{+\infty} \lambda e^{-\lambda x} \mathrm{d}x&=2\int_{2}^{+\infty} \lambda e^{-\lambda x} \mathrm{d}x \\
\left. - e^{- \lambda x} \right|_{1}^{+\infty}&=-2\left. e^{- \lambda x} \right|_{2}^{+\infty} \\
e^{-\lambda }&=2e^{-2\lambda } \\
2(e^{-\lambda })^{2}-e^{-\lambda }&=0 \\
e^{-\lambda }(2e^{-\lambda }-1)&=0 \\
\end{aligned} \hspace{5em}
\begin{aligned}
&\because e^{-\lambda }\neq 0 \\
&\therefore 2e^{-\lambda }-1=0 \\
&\therefore e^{-\lambda }=\frac{1}{2} \\
&\therefore \lambda =-\ln (\frac{1}{2})=\ln 2 \\
% &\left. \frac{(- \lambda x - 1) e^{- \lambda x}}{\lambda} \right|_{1}^{+\infty} =2\left. \frac{(- \lambda x - 1) e^{- \lambda x}}{\lambda} \right|_{2}^{+\infty} \\
% &0-\frac{(-\lambda -1)e^{-\lambda }}{\lambda }=2 (0-\frac{(-2\lambda -1)e^{-2\lambda }}{\lambda }) \\
% &(\lambda +1)e^{-\lambda }=2(2\lambda +1)e^{-2\lambda } \\
% &\lambda e^{-\lambda }+e^{-\lambda }=4\lambda e^{-2\lambda }+2e^{-2\lambda } \\
% &使用fx-991 \mathrm{CN}\ \mathrm{X}解得\lambda =2857100 \\
% solve(latex2sympy(r"0-\frac{(-\lambda -1)e^{-\lambda }}{\lambda }=2 (0-\frac{(-2\lambda -1)e^{-2\lambda }}{\lambda })"))
% solve(0 - (-y - 1)*exp(-y)/y - 2*(0 - (-1*2*y - 1)*exp(-1*2*y)/y))
\end{aligned}
$$
\begin{center}
% \includegraphics[width=0.5\linewidth]{imgs/2023-11-08-13-38-39.png}
\end{center}
\end{zhongwen}
\end{proof}
\item 设随机变量$X$服从几何分布$\operatorname{Ge}(p)$,求$X$的数学期望$EX$
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&\because 0<p<1 \\
&\therefore EX=\sum_{k=1}^{\infty}kp(1-p)^{k-1} = \frac{1}{p} \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 设随机变量$X$服从几何分布$\operatorname{Ge}(p)$,求$X$的方差$\operatorname{Var}X$
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&\because 0<p<1 \\
\therefore \operatorname{Var}X & = EX^{2}-(EX)^{2} \\
& = \sum_{k=1}^{\infty}k^{2}p(1-p)^{k-1} - \left( \frac{1}{p} \right) ^{2} \\
& = \frac{2 - p}{p^{2}} - \frac{1}{p^{2}} \\
& = \frac{1-p}{p^{2}} \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 设随机变量$X$服从Gamma分布$\operatorname{Ga}(\alpha ,\lambda )$,求数学期望$EX^{n}$
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
EX^{n} & = \int_{-\infty}^{+\infty} x^{n}p(x) \mathrm{d}x \\
&=\int_{0}^{+\infty} x^{n} \cdot \frac{\lambda ^{\alpha }}{\Gamma (\alpha )}x^{\alpha -1}e^{-\lambda x} \mathrm{d}x \\
&=\frac{1}{\lambda ^{n}\Gamma(\alpha )}\int_{0}^{+\infty} (\lambda x)^{n+\alpha -1}e^{-\lambda x} \mathrm{d}(\lambda x) \\
&=\frac{\Gamma(n+\alpha )}{\lambda ^{n}\Gamma(\alpha )} \\
&=\frac{\alpha (\alpha +1)\cdots(\alpha +n-1)}{\lambda ^{n}} \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 设随机变量$X$服从均匀分布$U(0,1)$,计算随机变量$X^{3}$的方差。
\begin{proof}[解]
\begin{zhongwen}
$$
由题意可知X的概率密度函数为p(x)=\begin{cases} 0, & x<0 或x>1\\ 1, & 0\leqslant x\leqslant 1 \end{cases}
$$
$$
\begin{aligned}
\operatorname{Var}X^{3} & = E(X^{3})^{2}-(EX^{3})^{2} \\
&=\int_{-\infty}^{+\infty} x^{6}p(x) \mathrm{d}x-\left( \int_{-\infty}^{+\infty} x^{3}p(x) \mathrm{d}x \right) ^{2} \\
&=\int_{0}^{1} x^{6} \mathrm{d}x-\left( \int_{0}^{1} x^{3} \mathrm{d}x \right) ^{2} \\
& = \frac{9}{112} \\
& \approx 0.0803571428571429 \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\end{enumerate}
\end{document}