290 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
			
		
		
	
	
			290 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
| \documentclass[全部作业]{subfiles}
 | ||
| \input{mysubpreamble}
 | ||
| \begin{document}
 | ||
| \setcounter{chapter}{3}
 | ||
| \setcounter{section}{2}
 | ||
| \section{练习题\thesection}
 | ||
| \begin{enumerate}
 | ||
|     \questionandanswerSolution[1]{
 | ||
|         设$X$的状态空间为$\{ 1,2,3 \}$,转移概率矩阵为$\begin{pmatrix}
 | ||
|         0 & \frac{1}{2} & \frac{1}{2} \\
 | ||
|         \frac{1}{2} & 0 & \frac{1}{2} \\
 | ||
|         0 & \frac{1}{3} & \frac{2}{3} \\
 | ||
|         \end{pmatrix}$,对任意$n\geqslant 1$,求$f_{1,2}^{(n)}$。
 | ||
|     }{
 | ||
|         $$
 | ||
|         \begin{cases}
 | ||
|         F_{12}(u)=p_{12}u+p_{11}uF_{12}(u)+p_{13}uF_{32}(u)\quad \mycircle{1}  \\
 | ||
|         F_{22}(u)=p_{22}u+p_{21}uF_{12}(u)+p_{23}uF_{32}(u) \quad \mycircle{2} \\
 | ||
|         F_{32}(u)=p_{32}u+p_{31}uF_{12}(u)+p_{33}uF_{32}(u) \quad \mycircle{3} \\
 | ||
|         \end{cases}
 | ||
|         $$
 | ||
|         由\mycircle{1}和\mycircle{3}可得
 | ||
|         $$
 | ||
|         \begin{cases}
 | ||
|         F_{12}(u)=\frac{1}{2}u+\frac{1}{2}uF_{32}(u) \\
 | ||
|         F_{32}(u)=\frac{1}{2}u+\frac{2}{3}uF_{32}(u) \\
 | ||
|         \end{cases}
 | ||
|         $$
 | ||
|         解得
 | ||
|         $$
 | ||
|         \begin{cases}
 | ||
|         F_{32}(u)=\frac{\frac{1}{2}u}{1-\frac{2}{3}u} \\
 | ||
|         F_{12}(u)=\frac{1}{2}u+\frac{\frac{1}{4}u^{2}}{1-\frac{2}{3}u} \\
 | ||
|         \end{cases}
 | ||
|         $$
 | ||
|         所以
 | ||
|         $$
 | ||
|         F_{12}(u)=\frac{1}{2}u+\sum_{n=1}^{\infty} \frac{1}{4}u^{2}\left( \frac{2}{3}u \right) ^{n-1} = \frac{1}{2}u+\sum_{n=1}^{\infty} \frac{1}{4} \left( \frac{2}{3} \right) ^{n-1} u^{n+1} = \frac{1}{2}u+ \sum_{n=2}^{\infty} \frac{1}{2} \left( \frac{2}{3} \right) ^{n-2} u^{n}
 | ||
|         $$
 | ||
|         综上,$\displaystyle f_{12}^{(1)}=\frac{1}{2}u, \quad f_{12}^{(n)}=\frac{1}{2}\left( \frac{2}{3} \right) ^{n-2}(n\geqslant 2)$。
 | ||
|     }
 | ||
|     \questionandanswerSolution[2]{
 | ||
|         一个盗窃犯长期在$A=1,B=2,C=3$三地流传作案,治安部门调查后发现他每年作案次数服从强度为$3$的泊松分布,而连续两次作案的地点变化服从转移概率矩阵$\begin{pmatrix}
 | ||
|         0 & 0 & 1 \\
 | ||
|         \frac{1}{2} & \frac{1}{2} & 0 \\
 | ||
|         0 & 1 & 0 \\
 | ||
|         \end{pmatrix}$,并且作案次数与作案地点无关。已知此人刚刚在$A$地作案,试估计一年内他在$A$地再作案的概率。
 | ||
|     }{
 | ||
|         由题意可知,作案地点的变化为时齐马氏链,从而所求的概率为$\displaystyle E_{k\sim \operatorname{Poi}(3)}f_{11}^{(k)}$。
 | ||
|         % 这里有个问题,如果$p_{21}=1,p_{22}=0$的话,那方程组中就没有$\frac{1}{2}u$这一项,那么$F_{21}(u)=0$?
 | ||
|         $$
 | ||
|         \begin{cases}
 | ||
|         F_{11}(u)=uF_{31}(u) & \mycircle{1} \\
 | ||
|         F_{21}(u)=\frac{1}{2}uF_{11}(u)+\frac{1}{2}u &\mycircle{2} \\
 | ||
|         F_{31}(u)=uF_{21}(u) &\mycircle{3} \\
 | ||
|         \end{cases}
 | ||
|         $$
 | ||
|         由\mycircle{1}\mycircle{3}得$F_{11}(u)=u^{2}F_{21}(u)$,代入\mycircle{2}可得$F_{21}(u)=\frac{1}{2}u^{3}F_{21}(u)+\frac{1}{2}u$,解得$\displaystyle F_{21}(u)=\frac{\frac{1}{2}u}{1-\frac{1}{2}u^{3}}$,所以
 | ||
|         $$
 | ||
|         F_{11}(u)=\frac{\frac{1}{2}u^{3}}{1-\frac{1}{2}u^{3}}=\sum_{n=1}^{\infty} \frac{1}{2}u^{3} \left( \frac{1}{2}u^{3} \right) ^{n-1}=\sum_{n=1}^{\infty} \left( \frac{1}{2} \right) ^{n} u^{3n}
 | ||
|         $$
 | ||
|         令$k=3n$,则$f_{11}^{(k)}=\begin{cases}
 | ||
|         \left( \frac{1}{2} \right) ^{\frac{k}{3}},\quad & k=3n \\
 | ||
|         0,\quad & k\neq 3n \\
 | ||
|         \end{cases}\ ,n\in \mathbb{Z}^{+}, k\in \mathbb{Z}^{+}$,所以
 | ||
|         $$
 | ||
|         E_{k\sim \operatorname{Poi}(3)}f_{11}^{(k)}=\sum_{n=1}^{\infty} \left( \frac{1}{2} \right) ^{n} \cdot \frac{3^{3n}}{(3n)!}e^{-3} = \sum_{n=1}^{\infty} \frac{\left( 3 \sqrt[3]{\frac{1}{2}} \right) ^{3n}}{(3n)!} e^{-3}=e^{3 \sqrt[3]{\frac{1}{2}}} e^{-3} = e^{\frac{3}{\sqrt[3]{2}}-3}
 | ||
|         $$
 | ||
|     }
 | ||
|     \questionandanswerSolution[3]{
 | ||
|         设$X$的状态空间为$\{ 1,2,3 \}$,转移概率矩阵为$\begin{pmatrix}
 | ||
|         \frac{1}{2} & \frac{1}{2} & 0 \\
 | ||
|         \frac{2}{3} & \frac{1}{3} & 0 \\
 | ||
|         0 & \frac{1}{3} & \frac{2}{3} \\
 | ||
|         \end{pmatrix}$。求$f_{3,2}$和$m_{3,2}$。
 | ||
|     }{
 | ||
|         $$
 | ||
|         \begin{cases}
 | ||
|         f_{32}=\frac{1}{3}+\frac{2}{3}f_{32},\quad & \mycircle{1} \\
 | ||
|         f_{12}=\frac{1}{2}+\frac{1}{2}f_{12},\quad & \mycircle{2} \\
 | ||
|         f_{22}=\frac{1}{3}+\frac{2}{3}f_{12},\quad & \mycircle{3} \\
 | ||
|         \end{cases}\qquad \begin{cases}
 | ||
|         m_{32}=f_{32}+\frac{2}{3}m_{32},\quad & \mycircle{4} \\
 | ||
|         m_{12}=f_{12}+\frac{1}{2}m_{22},\quad & \mycircle{5} \\
 | ||
|         m_{22}=f_{22}+\frac{2}{3}m_{12},\quad & \mycircle{6} \\
 | ||
|         \end{cases}
 | ||
|         $$
 | ||
|         由\mycircle{1}可得$f_{32}=1$,代入\mycircle{4}可得$m_{32}=3$。
 | ||
|     }
 | ||
|     \questionandanswerSolution[4]{
 | ||
|         若一篇文稿有$n$个错误,每次校阅至少能发现一个,但留下来的错误数在$0$到$n-1$之间等可能存在.设原稿共有$a$个错误,问为了改正全部错误平均需要校阅几次?
 | ||
|     }{
 | ||
|         设随机过程$X$表示在某个时刻留下来的错误数,则$X$是时齐马氏链,状态空间为$\{1, 2, \cdots ,n-1\}$。$X$的转移概率矩阵为
 | ||
|         $$
 | ||
|         \begin{pmatrix}
 | ||
|         1 & 0 & 0 & \cdots & 0 \\
 | ||
|         1 & 0 & 0 & \cdots & 0 \\
 | ||
|         \frac{1}{2} & \frac{1}{2} & 0 & \cdots & 0 \\
 | ||
|         \vdots & \vdots & \vdots & \ddots & \vdots \\
 | ||
|         \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \cdots & 0 \\
 | ||
|         \end{pmatrix}_{n\times n}
 | ||
|         $$
 | ||
|         所以
 | ||
|         $$
 | ||
|         \begin{cases}
 | ||
|         f_{10}=1 \\
 | ||
|         f_{20}=\frac{1}{2}+\frac{1}{2}f_{10}=1 \\
 | ||
|         f_{30}=\frac{1}{3}+\frac{1}{3}f_{10}+\frac{1}{3}f_{20}=1 \\
 | ||
|         \cdots \\
 | ||
|         f_{n0}=\frac{1}{n}+\sum_{i=1}^{n} f_{i0}=1 \\
 | ||
|         \end{cases} \quad 
 | ||
|         \begin{cases}
 | ||
|         m_{10}=f_{10} \\
 | ||
|         m_{20}=f_{20}+\frac{1}{2}m_{10}=1+\frac{1}{2}\times 1=\frac{3}{2} \\
 | ||
|         m_{30}=f_{30}+\frac{1}{3}m_{10}+\frac{1}{3}m_{20}=1+\frac{1}{3}\times 1+\frac{1}{3}\times \frac{3}{2}=\frac{11}{6} \\
 | ||
|         \cdots \\
 | ||
|         m_{n0}=f_{n0}+\sum_{i=1}^{n-1} \frac{1}{n} m_{i0} \\
 | ||
|         \end{cases}
 | ||
|         $$
 | ||
|         根据递推公式算出$m_{n0}$(不会算通项公式了),将$a$代入,则可知为了改正全部错误平均需要校阅$m_{a0}$次。
 | ||
|     }
 | ||
|     \questionandanswerSolution[6]{
 | ||
|         (Ehrenfest 模型)设一个坛子内装有红白两色共$N$个球,每次随机地从坛子中抽出一个球,把它换成另一种颜色后放回。以$X_n$表示经$n$次抽放后坛中的红球数,那么$X=\{ X_n\ ;\ n\geqslant 0 \}$为时齐马氏链。若开始时坛内只有一个红球,问平均要抽放多少次才能使坛内全是白球?
 | ||
|     }{
 | ||
|         可以观察到$X$类似带反射壁的随机游动,但向中间收敛的概率更大,转移概率矩阵为
 | ||
|         $$
 | ||
|         \begin{pmatrix}
 | ||
|         0 & 1 & 0 & \cdots & 0 & 0 \\
 | ||
|         \frac{1}{N} & 0 & \frac{N-1}{N} & \cdots & 0 & 0 \\
 | ||
|         0 & \frac{2}{N} & 0 & \cdots & 0 & 0 \\
 | ||
|         \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 | ||
|         0 & 0 & 0 & \cdots & 0 & \frac{1}{N} \\
 | ||
|         0 & 0 & 0 & \cdots & 1 & 0 \\
 | ||
|         \end{pmatrix}
 | ||
|         $$
 | ||
| 
 | ||
|         开始时坛内只有一个红球,那么$X_0=1$,使坛内全是白球即$X_{?}=0$,所以所求的平均抽放次数为$m_{10}$。
 | ||
| 
 | ||
|         由于这是元素有限的本质类,从而一定是常返类,所以$\forall i,j \in \{ 1,2, \cdots N \}, f_{ij}=1$,所以可以直接列出$m_{ij}$的方程组。
 | ||
|         $$
 | ||
|         \begin{cases}
 | ||
|         m_{00}&=1+m_{10}  \\
 | ||
|         m_{10}&=1+\frac{N-1}{N}m_{20}+\frac{1}{N}m_{00} \\
 | ||
|         m_{20}&=1+\frac{2}{N}m_{10}+\frac{N-2}{N}m_{30} \\
 | ||
|         \cdots \\
 | ||
|         m_{n-1,0}&=1+\frac{N-1}{N}m_{n-2,0}+\frac{1}{N}m_{n0} \\
 | ||
|         m_{n0}&=1+m_{n-1,0} \\
 | ||
|         \end{cases}
 | ||
|         $$
 | ||
|         写成矩阵的形式为
 | ||
|         $$
 | ||
|         \begin{bmatrix}
 | ||
|         1 & -1 & 0 & \cdots & 0 & 0 \\
 | ||
|         -\frac{1}{N} & 1 & -\frac{N-1}{N} & \cdots & 0 & 0 \\
 | ||
|         0 & -\frac{2}{N} & 1 & \cdots & 0 & 0 \\
 | ||
|         \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 | ||
|         0 & 0 & 0 & \cdots & 1 & -\frac{1}{N} \\
 | ||
|         0 & 0 & 0 & \cdots & -1 & 1 \\
 | ||
|         \end{bmatrix}
 | ||
|         \begin{bmatrix}
 | ||
|         m_{00} \\
 | ||
|         m_{10} \\
 | ||
|         m_{20} \\
 | ||
|         \vdots \\
 | ||
|         m_{n-1,0} \\
 | ||
|         m_{n0} \\
 | ||
|         \end{bmatrix}
 | ||
|         = \begin{bmatrix}
 | ||
|         1 \\
 | ||
|         1 \\
 | ||
|         1 \\
 | ||
|         \vdots \\
 | ||
|         1 \\
 | ||
|         1 \\
 | ||
|         \end{bmatrix}
 | ||
|         $$
 | ||
|         解得$m_{10}=\left( \begin{bmatrix}
 | ||
|         1 & -1 & \cdots & 0 \\
 | ||
|         -\frac{1}{N} & 1 & \cdots & 0 \\
 | ||
|         \vdots & \vdots & \ddots & \vdots \\
 | ||
|         0 & 0 & \cdots & 1 \\
 | ||
|         \end{bmatrix} ^{-1}  \begin{bmatrix}
 | ||
|         1 \\
 | ||
|         1 \\
 | ||
|         \vdots \\
 | ||
|         1 \\
 | ||
|         \end{bmatrix}\right)(1, 0)$即为使坛内全是白球的平均抽放次数。
 | ||
|     }
 | ||
|     \begin{shaded}
 | ||
|     \item[\textbf{补}]
 | ||
|         (“赌徒输光模型”)考虑$\{ 0,1, \cdots ,N \}(N\geqslant 2)$上的$(q,p)$-简单随机游动($0<p,q<1,p+q=1$),其中两个端点是“完全吸收壁”(即$p_{00}=p_{NN}=1$。对$i \in \{ 1, \cdots ,N-1 \}$,计算$f_{i0}$(即初始状态为$i$时的“输光”概率)。
 | ||
|     \end{shaded}
 | ||
|     {
 | ||
|     \begin{solution}\kaishu
 | ||
|         由题意可知转移概率矩阵为
 | ||
|         $$
 | ||
|         \begin{bmatrix}
 | ||
|         1 & 0 & 0 & \cdots & 0 & 0 \\
 | ||
|         q & 0 & p & \cdots & 0 & 0 \\
 | ||
|         0 & q & 0 & \cdots & 0 & 0 \\
 | ||
|         \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 | ||
|         0 & 0 & 0 & \cdots & 0 & p \\
 | ||
|         0 & 0 & 0 & \cdots & 0 & 1 \\
 | ||
|         \end{bmatrix}_{(N+1)\times (N+1)}
 | ||
|         $$
 | ||
|         则可以列出关于$f_{i0}$的方程组
 | ||
|         $$
 | ||
|         \begin{cases}
 | ||
|         f_{00}=1 \\
 | ||
|         f_{10}=qf_{00}+pf_{20} \\
 | ||
|         f_{20}=qf_{10}+pf_{30} \\
 | ||
|         \cdots \\
 | ||
|         f_{n-2,0}=qf_{n-3,0}+pf_{n-1,0} \\
 | ||
|         f_{n-1,0}=qf_{n-2,0}+pf_{n0} \\
 | ||
|         f_{n_0}=f_{n_0} & \text{(这一条方程可以去除,因为$f_{n0}=0$)}\\
 | ||
|         \end{cases}
 | ||
|         $$
 | ||
|         写成矩阵的形式为
 | ||
|         $$
 | ||
|         \begin{bmatrix}
 | ||
|         1 & 0 & 0 & \cdots & 0 & 0 \\
 | ||
|         q & -1 & p & \cdots & 0 & 0 \\
 | ||
|         0 & q & -1 & \cdots & 0 & 0 \\
 | ||
|         \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 | ||
|         0 & 0 & 0 & \cdots & -1 & p \\
 | ||
|         0 & 0 & 0 & \cdots & q & -1 \\
 | ||
|         \end{bmatrix}
 | ||
|         \begin{bmatrix}
 | ||
|         f_{00} \\
 | ||
|         f_{10} \\
 | ||
|         f_{20} \\
 | ||
|         \vdots \\
 | ||
|         f_{n-2,0} \\
 | ||
|         f_{n-1,0} \\
 | ||
|         \end{bmatrix}
 | ||
|         = \begin{bmatrix}
 | ||
|         1 \\
 | ||
|         0 \\
 | ||
|         0 \\
 | ||
|         \vdots \\
 | ||
|         0 \\
 | ||
|         0 \\
 | ||
|         \end{bmatrix}
 | ||
|         $$
 | ||
|         解得$\begin{bmatrix}
 | ||
|         f_{00} & f_{10} & f_{20} & \cdots & f_{n-1,0} \\
 | ||
|         \end{bmatrix}^{\mathrm{T}}\oplus [f_{n0}]$即为所求的$f_{i0}$。(实在算不出来了)
 | ||
|         % $$
 | ||
|         % \begin{bmatrix}
 | ||
|         % 1 & 0 & 0 & 0 & 0  & 0 & 0 & 0 & 0 & 0 \\
 | ||
|         % q & -1 & p & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 | ||
|         % 0 & q & -1 & p & 0 & 0 & 0 & 0 & 0 & 0 \\
 | ||
|         % 0 & 0 & q & -1 & p & 0 & 0 & 0 & 0 & 0 \\
 | ||
|         % 0 & 0 & 0 & q & -1 & 0 & 0 & 0 & 0 & 0 \\
 | ||
|         % 0 & 0 & 0 & 0 & q & -1 & p & 0 & 0 & 0  \\
 | ||
|         % 0 & 0 & 0 & 0 & 0 & q & -1 & p & 0 & 0 \\
 | ||
|         % 0 & 0 & 0 & 0 & 0 & 0 & q & -1 & p & 0 \\
 | ||
|         % 0 & 0 & 0 & 0 & 0 & 0 & 0 & q & -1 & p \\
 | ||
|         % 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q & -1 \\
 | ||
|         % \end{bmatrix}^{-1} 
 | ||
|         % \begin{bmatrix}
 | ||
|         % 1 \\
 | ||
|         % 0 \\
 | ||
|         % 0 \\
 | ||
|         % 0 \\
 | ||
|         % 0 \\
 | ||
|         % 0 \\
 | ||
|         % 0 \\
 | ||
|         % 0 \\
 | ||
|         % 0 \\
 | ||
|         % 0 \\
 | ||
|         % \end{bmatrix} = \begin{bmatrix}1\\\frac{q (- 2 p q + 1)}{p^{2} q^{2} - 3 p q + 1}\\\frac{q^{2} (- p q + 1)}{p^{2} q^{2} - 3 p q + 1}\\\frac{q^{3}}{p^{2} q^{2} - 3 p q + 1}\\\frac{q^{4}}{p^{2} q^{2} - 3 p q + 1}\\\frac{q^{5}}{3 p^{2} q^{2} - 4 p q + 1}\\\frac{q^{6} (- 2 p q + 1)}{3 p^{4} q^{4} - 13 p^{3} q^{3} + 16 p^{2} q^{2} - 7 p q + 1}\\- \frac{q^{7}}{3 p^{3} q^{3} - 10 p^{2} q^{2} + 6 p q - 1}\\\frac{q^{8}}{3 p^{4} q^{4} - 13 p^{3} q^{3} + 16 p^{2} q^{2} - 7 p q + 1}\\\frac{q^{9}}{3 p^{4} q^{4} - 13 p^{3} q^{3} + 16 p^{2} q^{2} - 7 p q + 1}\end{bmatrix}
 | ||
|         % %  = \begin{bmatrix}1\\\frac{q (- 2 p q + 1)}{p^{2} q^{2} - 3 p q + 1}\\\frac{q^{2} (- p q + 1)}{p^{2} q^{2} - 3 p q + 1}\\\frac{q^{3}}{p^{2} q^{2} - 3 p q + 1}\\\frac{q^{4}}{p^{2} q^{2} - 3 p q + 1}\end{bmatrix}
 | ||
|         % $$
 | ||
|         % $$
 | ||
|         % \begin{bmatrix}
 | ||
|         % 1 & 0 & 0 \\
 | ||
|         % q & -1 & p \\
 | ||
|         % 0 & q & -1 \\
 | ||
|         % \end{bmatrix}^{-1}
 | ||
|         % \begin{bmatrix}
 | ||
|         % 1 \\
 | ||
|         % 0 \\
 | ||
|         % 0 \\
 | ||
|         % \end{bmatrix} = \begin{bmatrix}1\\- \frac{q}{p q - 1}\\- \frac{q^{2}}{p q - 1}\end{bmatrix}
 | ||
|         % $$
 | ||
|     \end{solution}
 | ||
|     }
 | ||
| \end{enumerate}
 | ||
| \end{document} |