SchoolWork-LaTeX/离散数学/平时作业/第二周作业.tex
423A35C7 5906ac1efc 重构目录层次
0-课程笔记
1-平时作业
2-实验报告
3-期末大作业
2024-09-02 18:32:58 +08:00

201 lines
8.0 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\usepackage{mylatex}
\pagestyle{fancy}
\fancyhead{}
\fancyhead[C]{\mysignature}
\setcounter{chapter}{1}
\setcounter{section}{2}
\begin{document}
\section{集合运算的性质}
\begin{enumerate}
\item[9.] \ExplSyntaxOn
\begin{zhongwen}
$设A、B、C是集合证明下列结论$
\end{zhongwen}
\ExplSyntaxOff
\begin{enumerate}
\item[(3)] \ExplSyntaxOn
\begin{zhongwen}
$若A\cap B=\varnothing则A-B=A$
\end{zhongwen}
\ExplSyntaxOff
\begin{proof}
\ExplSyntaxOn
\begin{zhongwen}
$$
\begin{aligned}
&\because A\cap B=\varnothing\\
&\therefore \forall x \in A \implies x\notin B\\
&\therefore \forall x \in A\implies x\in \bar{B}\\
&\therefore A \subseteq \bar{B}\\
&\therefore A\cap \bar{B}=A\\
&\therefore A-B=A\\
\end{aligned}
$$
\end{zhongwen}
\ExplSyntaxOff
\end{proof}
\end{enumerate}
\item[11.] \ExplSyntaxOn
\begin{zhongwen}
$指出下列集合等式成立的充分必要条件其中A、B和C是集合$
\end{zhongwen}
\ExplSyntaxOff
\begin{enumerate}
\item[(5)] $(A-B)\cap (A-C)=\varnothing$
$$
\begin{aligned}
&(A-B)\cap (A-C)=A\cap \bar{B}\cap A \cap \bar{C}=A\cap \bar{B}\cap \bar{C}=A-B-C=\varnothing\\
&\iff A-B-C=\varnothing\\
\end{aligned}
$$
\end{enumerate}
\item[13.] \ExplSyntaxOn
\begin{zhongwen}
$设A和B是集合集合运算对称差\oplus 定义如下A\oplus B=(A-B)\cup (B-A).\\证明下列恒等式其中A、B和C是任意集合$
\end{zhongwen}
\ExplSyntaxOff
\begin{enumerate}
\item[(5)] $A\oplus B=(A\cup B)-(A\cap B)$
\begin{proof}
\ExplSyntaxOn
\begin{zhongwen}
$$
\begin{aligned}
(A\cup B)-(A\cap B) & = (A\cup B)\cap \overline{A\cap B} \\
& = (A\cup B)\cap (\bar{A}\cup \bar{B}) \\
& = ((A\cup B)\cap \bar{A})\cup ((A\cup B)\cap \bar{B}) \\
& = (B\cap \bar{A})\cup (A\cap \bar{B}) \\
& = (A-B)\cup (B-A) \\
& = A\oplus B \\
\end{aligned}
$$
\end{zhongwen}
\ExplSyntaxOff
\end{proof}
\end{enumerate}
\item[21.] \textit{设A、B、C和D是任意集合.请证明:}
\begin{enumerate}
\item $(A\times C)\cap (B\times D)=(A\cap B)\times (C\cap D)$
\begin{proof}
\ExplSyntaxOn
\begin{zhongwen}
$$
\begin{aligned}
\forall (x,y), \quad&(x,y)\in (A\times C)\cap (B\times D)\\
\iff &(x,y)\in (A\times C)(x,y)\in (B\times D)\\
\iff &x\in A,y\in C且x\in B,y\in D\\
\iff &x\in A\cap B且y\in C\cap D\\
\iff &(x,y)\in (A\cap B)\times (C\cap D)\\
\therefore \quad&(A\times C)\cap (B\times D)=(A\cap B)\times (C\cap D)\\
\end{aligned}
$$
\end{zhongwen}
\ExplSyntaxOff
\end{proof}
\end{enumerate}
\item[22.] \textit{$\{ A_\beta|\beta\in B \}$是以B为下标集的集合族.证明下列恒等式.}
\begin{enumerate}
\item $\overline{\displaystyle \bigcup_{\beta\in B} A_\beta}=\displaystyle \bigcap_{\beta\in B} \overline{A_\beta}$
\begin{proof}
% \ExplSyntaxOn
\begin{zhongwen}
$$
\begin{aligned}
\forall x, \quad&x\in \overline{\bigcup_{\beta\in B}A_\beta}\\
\iff& x\notin \bigcup_{\beta\in B} A_\beta\\
\iff&\lnot (\exists \beta\in B, x\in A_\beta)\\
\iff&\forall \beta\in B, x\notin A_\beta\\
\iff&\forall \beta\in B, x\in \overline{A_\beta}\\
\iff&x\in \bigcap_{\beta\in B} \overline{A_\beta}\\
\therefore \quad&\overline{\bigcup_{\beta\in B} A_\beta}=\bigcap_{\beta\in B} \overline{A_\beta}\\
\end{aligned}
$$
\end{zhongwen}
% \ExplSyntaxOff
\end{proof}
\end{enumerate}
\item[24.] \textit{设集合族$\{A_n|n\in \mathbb{N}\}$,令$B_0=A_0$$B_n=A_n-\displaystyle \bigcup_{k=0}^{n-1} A_k(n>0) $.证明:}
\begin{enumerate}
\item[(2)] $\displaystyle\bigcup_{ n\in \mathbb{N}} A_n =\displaystyle \bigcup_{n\in \mathbb{N}} B_n$
\begin{proof}
\begin{zhongwen}
$$
\begin{aligned}
&\because B_n=A_n-\displaystyle \bigcup_{k=0}^{n-1}A_k(n>0)\\
&\therefore \forall n>0, B_n\in A_n\\
&\forall x\in \bigcup_{n\in \mathbb{N}} B_n \iff\exists n_0\in \mathbb{N},x\in B_{n_0}\implies x\in A_{n_0}\\
&\therefore \displaystyle \bigcup_{n\in \mathbb{N}}A_n\supseteq \bigcup_{n\in \mathbb{N}} B_n \\
&\forall x\in \displaystyle \bigcup_{n\in \mathbb{N}} A_n, 则 \exists n\in \mathbb{N},x\in A_{n} \\
&设C_x=\{ n|x\in A_n \} \\
&设n_1=\min{C_x} \\
&则x\in A_{n_1}\forall n_2<n_1,x\notin A_{n_2} \\
&\therefore x\notin \displaystyle \bigcup_{k=0}^{n_1-1}A_k \\
&\therefore x\in A_{n_1}-\bigcup_{k=0}^{n_1-1}A_k \\
&\therefore x\in B_{n_1} \\
&\therefore x\in \displaystyle \bigcup_{n\in \mathbb{N}} B_n \\
&\therefore \bigcup_{n\in \mathbb{N}}A_n \subseteq \bigcup_{n\in \mathbb{N}} B_n \\
&\therefore \bigcup_{n\in \mathbb{N}} A_n =\bigcup_{n\in \mathbb{N}} B_n \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\end{enumerate}
\end{enumerate}
\section{有限集合的计数}
\begin{enumerate}
\item[26.] \textit{以1开头或者以00结束的不同的字节8位的二进制串有多少个}
\begin{zhongwen}
$$
\begin{aligned}
&设A为以1开头的不同的字节B为以00结束的不同的字节。 \\
&\left\vert1开头或者以00结束的不同的字节 \right\vert =\left\vert A\cup B \right\vert =\left\vert A \right\vert +\left\vert B \right\vert -\left\vert A\cap B \right\vert =2^{7}+2^{6}-2^{5} = 160 \\
\end{aligned}
$$
\end{zhongwen}
\item[27.] \begin{zhongwen}
$1\sim 200的正整数中,$
\end{zhongwen}
\begin{enumerate}
\item[(3)] \begin{zhongwen}
$含因子35,但不同时含因子35的正整数共有多少个?$
\end{zhongwen}
\begin{zhongwen}
$$
\begin{aligned}
&设A为1\sim 200中含因子3的正整数B为1\sim 200中含因子5的正整数 \\
&\left\vert1\sim 200的正整数中 含因子35,但不同时含因子35的正整数 \right\vert \\
&= \left\vert A\oplus B \right\vert =\left\vert A \right\vert +\left\vert B \right\vert -2\left\vert A\cap B \right\vert =66+40-2*13 = 80 \\
\end{aligned}
$$
\end{zhongwen}
*用JavaScript再验证一下
\begin{minted}{javascript}
> a =[]
[]
> for (let i = 1; i<=200; i++){
... a.push(i);
... }
> a.reduce((out, cur) => {
... if ((cur%3==0 || cur%5==0) && cur%15!=0) out.push(cur);
... return out;
... }, Array()).length
80
\end{minted}
\item[(5)] \begin{zhongwen}
$15互素的正整数(即与15之间的最大公因子为1的那些正整数)共有多少个?$
\end{zhongwen}
\begin{zhongwen}
$$
\begin{aligned}
&A与B的定义和上题相同 \\
&\left\vert1\sim 200的正整数中与15互素的正整数 \right\vert \\
&=\left\vert 1\sim 200的正整数 \right\vert -\left\vert A\cup B \right\vert \\
&=200-(\left\vert A \right\vert +\left\vert B \right\vert -\left\vert A\cap B \right\vert )=200-(66+40-13) = 107 \\
\end{aligned}
$$
\end{zhongwen}
\end{enumerate}
\end{enumerate}
\end{document}