SchoolWork-LaTeX/深度学习/实验讲解/lab4.tex

441 lines
15 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

% https://zhuanlan.zhihu.com/p/165140693
% https://zhuanlan.zhihu.com/p/36868831
%声明文档类型和比例
\documentclass[aspectratio=169, 10pt, utf8, mathserif]{ctexbeamer}
%调用相关的宏包
% \usepackage{beamerfoils}
\usepackage[outputdir=./latex-output]{minted}
\usepackage{multicol}
\setminted{breaklines=true, fontsize=\zihao{-6}}
% \PassOptionsToPackage{fontsize=\zihao{-6}}{minted}
\definecolor{shadecolor}{RGB}{204,232,207}
\usetheme{Berlin} %主题包之一,直接换名字即可
\setbeamertemplate{page number in head/foot}[totalframenumber]
\usecolortheme{beaver} %主题色之一,直接换名字即可。
\usefonttheme{professionalfonts}
% 设置用acrobat打开就会全屏显示
\hypersetup{pdfpagemode=FullScreen}
% 设置logo
% \pgfdeclareimage[height=2cm, width=2cm]{university-logo}{120701101}
% \logo{\pgfuseimage{university-logo}}
\parskip=1.2em
%--------------正文开始---------------
\begin{document}
%每个章节都有小目录
\AtBeginSubsection[]
{
\begin{frame}<beamer>
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
\title{《深度学习》实验4讲解}
\subtitle{多层感知机/全连接层}
\author[岳锦鹏]{岳锦鹏 \\ \small 10213903403}
\date{\today}
\begin{frame}
%\maketitle
\titlepage
\end{frame}
\begin{frame}
\frametitle{目录}
\tableofcontents[hideallsubsections]
\end{frame}
\section{整体浏览}
\begin{frame}[fragile]
首先逐个观察每个填空的部分需要完成哪些内容。
可以看到需要完成ReLU的反向传播过程。
\begin{minted}{python}
class Relu:
def __init__(self):
self.mem = {}
def forward(self, x):
self.mem['x'] = x
return np.where(x > 0, x, np.zeros_like(x))
def backward(self, grad_y):
'''
grad_y: same shape as x
'''
# ==========
# todo '''请完成激活函数的梯度后传'''
# ==========
\end{minted}
\end{frame}
\begin{frame}[fragile]
对于主要的模型部分,需要完成计算损失。
\begin{minted}{python}
def compute_loss(self, log_prob, labels):
'''
log_prob is the predicted probabilities
labels is the ground truth
Please return the loss
'''
# ==========
# todo '''请完成多分类问题的损失计算 损失为: 交叉熵损失 + L2正则项'''
# ==========
\end{minted}
\end{frame}
\begin{frame}[fragile]
按照给定的网络结构完成前向传播过程。
\begin{minted}{python}
def forward(self, x):
'''
x is the input features
Please return the predicted probabilities of x
'''
# ==========
# todo '''请搭建一个MLP前馈神经网络 补全它的前向传播 MLP结构为FFN --> RELU --> FFN --> Softmax'''
# ==========
\end{minted}
\end{frame}
\begin{frame}[fragile]
完成主模型的后向传播,注意这里可以使用其中各层的反向传播函数。
\begin{minted}{python}
def backward(self, label):
'''
label is the ground truth
Please compute the gradients of self.W1 and self.W2
'''
# ==========
# todo '''补全该前馈神经网络的后向传播算法'''
# ==========
\end{minted}
\end{frame}
\begin{frame}[fragile]
更新参数,这里要注意不要忘记正则项的损失。
\begin{minted}{python}
def update(self):
'''
Please update self.W1 and self.W2
'''
# ==========
# todo '''更新该前馈神经网络的参数'''
# ==========
\end{minted}
\end{frame}
\section{逐个实现}
\subsection{ReLU的反向传播}
\begin{frame}[fragile]
\begin{multicols}{2}
首先看ReLU的反向传播由于ReLU的公式为符号和课件中保持一致所以用了$a$$x$
$$
a = \begin{cases}
x,\quad & x>0 \\
0,\quad & x\leqslant 0 \\
\end{cases}
$$
所以显然
$$
\frac{\mathrm{d}a}{\mathrm{d}x} = \begin{cases}
1,\quad & x>0 \\
0,\quad & x\leqslant 0 \\
\end{cases}
$$
\columnbreak
\begin{minted}{python}
class Relu:
def __init__(self):
self.mem = {}
def forward(self, x):
self.mem['x'] = x
return np.where(x > 0, x, np.zeros_like(x))
def backward(self, grad_y):
'''
grad_y: same shape as x
'''
# ==========
# todo '''请完成激活函数的梯度后传'''
# ==========
\end{minted}
\end{multicols}
\end{frame}
\begin{frame}[fragile]
\begin{multicols}{2}
由于要计算梯度时要根据输入$x$是否大于0判断所以这里使用了\mintinline{python}{self.mem}来记忆上次输入的$x$,在反向传播的时候就可以使用记忆的$x$来进行分支,这里可以利用 numpy的批量操作能力实现\mintinline{python}{grad_y}是传入的梯度,返回的结果应为本层梯度与传入梯度的乘积:
$$
return = \frac{\mathrm{d}a}{\mathrm{d}x} \times grad\_y=\begin{cases}
grad\_y,\quad & x>0 \\
0,\quad & x\leqslant 0 \\
\end{cases}
$$
因此写出代码如下:
\columnbreak
\begin{minted}{python}
class Relu:
def __init__(self):
self.mem = {}
def forward(self, x):
self.mem['x'] = x
return np.where(x > 0, x, np.zeros_like(x))
def backward(self, grad_y):
'''
grad_y: same shape as x
'''
# ==========
# todo '''请完成激活函数的梯度后传'''
return np.where(self.mem['x'] > 0, grad_y, np.zeros_like(grad_y))
# ==========
\end{minted}
\end{multicols}
\mint{python}|return np.where(self.mem['x'] > 0, grad_y, np.zeros_like(grad_y))|
\end{frame}
\subsection{交叉熵损失+L2正则项}
\begin{frame}[fragile]
\begin{multicols}{2}
交叉熵损失的函数为
$$
loss=\sum_{\text{每个类别}i} -y_i \log(\hat{y}_i)
$$
L2正则项的损失为
$
\lambda \left\Vert W \right\Vert
$$\lambda$为系数,$W$为权重,距离用的是欧几里得距离,即
$$\displaystyle \sqrt{\sum_{W\text{中的每个参数}x} x^{2} }$$
这里有两层网络,也就是两层权重,所以
$$
L2 = \lambda_1 \left\Vert W_1 \right\Vert +\lambda_2 \left\Vert W_2 \right\Vert
$$
\columnbreak
\begin{minted}{python}
def compute_loss(self, log_prob, labels):
'''
log_prob is the predicted probabilities
labels is the ground truth
Please return the loss
'''
# ==========
# todo '''请完成多分类问题的损失计算 损失为: 交叉熵损失 + L2正则项'''
# ==========
\end{minted}
\end{multicols}
\end{frame}
\begin{frame}[fragile]
\begin{multicols}{2}
\mintinline{python}{log_prob}应该是希望传入已经经过$\log$计算的$\hat{y}$但是在lab4.ipynb里发现其实是没有经过$\log$计算的\mintinline{python}{pred_y},这里还得自己计算$\log(\hat{y})$,但是$\log (\hat{y}_i)$由于在前向传播的时候计算过就提前缓存在\mintinline{python}{self.log_value}了。
\mintinline{python}{labels}|$y$\mintinline{python}{self.log_value}|$\log(\hat{y})$是one-hot编码的形状为[批大小,类别数],根据公式在类别数维度求和,所以是\mintinline{python}{axis=1}。注意还要在批大小维度求平均,即\mintinline{python}{.mean(0)}
计算距离这里直接使用了\mintinline{python}{np.linalg.norm}
\columnbreak
\begin{minted}{python}
def compute_loss(self, log_prob, labels):
'''
log_prob is the predicted probabilities
labels is the ground truth
Please return the loss
'''
# ==========
# todo '''请完成多分类问题的损失计算 损失为: 交叉熵损失 + L2正则项'''
return - np.sum(labels * self.log_value, axis=1).mean(0) + self.lambda1 * np.linalg.norm(self.W1) + self.lambda1 * np.linalg.norm(self.W2)
# ==========
\end{minted}
\end{multicols}
\end{frame}
\subsection{主模型的前向传播}
\begin{frame}[fragile]
\begin{multicols}{2}
这里$x$的形状是[批大小2828]这里的两个28分别是图像高度和宽度而且可以观察到\mintinline{python}{self.W1}的形状是[100, 785],但是$28\times 28=784$,说明需要把高度和宽度拉平后还需要拼接一个\mintinline{python}{np.ones}来替代偏置项的作用。即
\mint{python}|np.concatenate((x.reshape(x.shape[0], -1), np.ones((x.shape[0], 1))), axis=1)|
\mintinline{python}{Matmul.backward}的注释中可以看到\\
\mintinline{python}{x: shape(d, N)},所以拼接好之后还需要进行转置。
\columnbreak
\begin{minted}{python}
def forward(self, x):
'''
x is the input features
Please return the predicted probabilities of x
'''
# ==========
# todo '''请搭建一个MLP前馈神经网络 补全它的前向传播 MLP结构为FFN --> RELU --> FFN --> Softmax'''
# ==========
\end{minted}
\end{multicols}
\end{frame}
\begin{frame}[fragile]
\begin{multicols}{2}
\mintinline{python}{Softmax.forward}的注释中可以看到\mintinline{python}{x: shape(N, c)}因此在进行Softmax操作前还需要再转置回来。
理论上这时候就可以直接返回了,不需要用到\mintinline{python}{self.log}$\log$是在计算交叉熵时才会用到的操作但是在lab4.ipynb中非要先反向传播再计算损失反向传播需要\mintinline{python}{self.log.backward},但这又需要先调用过\mintinline{python}{self.log.forward}才能把输入记忆到\mintinline{python}{self.mem}中,才能正确返回梯度。
那没办法,只能先调用一下\mintinline{python}{self.log.forward}把结果缓存起来。
\columnbreak
\begin{minted}{python}
def forward(self, x):
'''
x is the input features
Please return the predicted probabilities of x
'''
# ==========
# todo '''请搭建一个MLP前馈神经网络 补全它的前向传播 MLP结构为FFN --> RELU --> FFN --> Softmax'''
y = np.concatenate((x.reshape(x.shape[0], -1), np.ones((x.shape[0], 1))), axis=1).T # 这形状真难弄
y = self.mul_h1.forward(self.W1, y)
y = self.relu.forward(y)
y = self.mul_h2.forward(self.W2, y).T
y = self.softmax.forward(y)
# print(y)
# 唉没办法非要先反向传播再计算损失那只能把log的结果缓存起来了
self.log_value = self.log.forward(y)
return y
# ==========
\end{minted}
\end{multicols}
\end{frame}
\subsection{主模型的反向传播}
\begin{frame}[fragile]
\begin{multicols}{2}
前面的准备工作都实现了后,这里就很简单了,只需要逐层反向传播就行了。
注意交叉熵损失为
$$
loss=\sum_{\text{每个类别}i} -y_i \log(\hat{y}_i)
$$
所以
$$
\frac{\mathrm{d}loss}{\mathrm{d}\log(\hat{y}_i)}= -y_i
$$
因此首个梯度为 \mintinline{python}{-label},后续的反向传播就交给各层的\mintinline{python}{backward}函数了。
\columnbreak
\begin{minted}{python}
def backward(self, label):
'''
label is the ground truth
Please compute the gradients of self.W1 and self.W2
'''
# ==========
# todo '''补全该前馈神经网络的后向传播算法'''
# ==========
\end{minted}
\end{multicols}
\end{frame}
\begin{frame}[fragile]
\begin{multicols}{2}
仍然要注意在Softmax反向传播后需要转置一下。
\mintinline{python}{Matmul.backward}返回的结果为\mintinline{python}{return grad_x, grad_W},这也提示了全连接层要保留对输入和对参数的求导,对输入的求导用来继续反向传播,对参数的求导用来更新参数。
\columnbreak
\begin{minted}{python}
def backward(self, label):
'''
label is the ground truth
Please compute the gradients of self.W1 and self.W2
'''
# ==========
# todo '''补全该前馈神经网络的后向传播算法'''
temp = self.log.backward(-label)
temp = self.softmax.backward(temp).T
temp, self.gradient2 = self.mul_h2.backward(temp)
temp = self.relu.backward(temp)
temp, self.gradient1 = self.mul_h1.backward(temp)
# ==========
\end{minted}
\end{multicols}
\end{frame}
\subsection{更新参数}
\begin{frame}[fragile]
\begin{multicols}{2}
更新参数只需要按照公式即可不要忘记L2正则项的梯度以下以$W_1$为例,$W_2$同理。
$W_1^{(i,j)}$表示$W_1$的第$i$$j$列的元素lr表示learning rate即学习率。
$$
\frac{\mathrm{d}L2}{\mathrm{d}W_1^{(i,j)}}= \frac{2 \lambda_1 W_1^{(i,j)}}{\left\Vert W_1 \right\Vert }
$$
$$
W_1 = W_1 - \left( \frac{\mathrm{d}loss}{\mathrm{d}W_1}+\frac{\mathrm{d}L2}{\mathrm{d}W_1} \right) \times lr
$$
\columnbreak
\begin{minted}{python}
def update(self):
'''
Please update self.W1 and self.W2
'''
# ==========
# todo '''更新该前馈神经网络的参数'''
self.W1 -= (self.gradient1 + 2 * self.lambda1 * self.W1 / np.linalg.norm(self.W1)) * self.lr
self.W2 -= (self.gradient2 + 2 * self.lambda1 * self.W2 / np.linalg.norm(self.W2)) * self.lr
# ==========
\end{minted}
\end{multicols}
\end{frame}
\begin{frame}
\zihao{-4}\centering{感谢观看!}
\end{frame}
\end{document}