SchoolWork-LaTeX/概率论/平时作业/单元作业5.tex
423A35C7 5906ac1efc 重构目录层次
0-课程笔记
1-平时作业
2-实验报告
3-期末大作业
2024-09-02 18:32:58 +08:00

239 lines
12 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\setlength{\textheight}{300em}
% \PassOptionsToPackage{papersize={170mm, 1000em}}{geometry}
% \usepackage[textheight=1em]{geometry}
\setlength{\paperheight}{300em}
\begin{document}
\chapter{单元作业5}
\begin{enumerate}
\questionandanswer[]{设随机变量$X$$Y$满足$EX=EY=0$, $\operatorname{Var}X=\operatorname{Var}Y=1$, $\operatorname{Cov}(X,Y)=\rho $,证明$E\max(X^{2},Y^{2})\leqslant 1+\sqrt{1-\rho ^{2}}$}{
\begin{proof}
因为$\operatorname{Cov}(X,Y)=EXY-EXEY=\rho $,而$EX=EY=0$,所以$EXY=\rho $\\
$\operatorname{Var}X=EX^{2}-(EX)^{2}=EX^{2}=1$$\operatorname{Var}Y=EY^{2}-(EY)^{2}=EY^{2}=1$
根据$\max(a,b)=\frac{\left\vert a+b \right\vert +\left\vert a-b \right\vert }{2}$和期望的线性性质,
\begin{equation}\label{eq:1}\tag{1}
E \max(X^{2},Y^{2})=E \frac{\left\vert X^{2}+Y^{2} \right\vert +\left\vert X^{2}-Y^{2} \right\vert }{2}=\frac{1}{2}E\left\vert X^{2}+Y^{2} \right\vert +\frac{1}{2}E\left\vert X^{2}-Y^{2} \right\vert
\end{equation}
其中,$E\left\vert X^{2}+Y^{2} \right\vert =E(X^{2}+Y^{2})=EX^{2}+EY^{2}=2$
$E\left\vert X^{2}-Y^{2} \right\vert =E\left\vert X+Y \right\vert \left\vert X-Y \right\vert $
根据Cauchy-Schwarz不等式$\left(E\left\vert X+Y \right\vert \left\vert X-Y \right\vert\right) ^{2}\leqslant E\left\vert X+Y \right\vert ^{2}E\left\vert X-Y \right\vert ^{2}$
其中$E\left\vert X+Y \right\vert ^{2}=E(X^{2}+2XY+Y^{2})=EX^{2}+2EXY+EY^{2}=2+2\rho $\\
$E\left\vert X-Y \right\vert ^{2}=E(X^{2}-2XY+Y^{2})=EX^{2}-2XY+EY^{2}=2-2\rho $
因此$\left( E\left\vert X+Y \right\vert \left\vert X-Y \right\vert \right) ^{2}\leqslant (2+2\rho )(2-2\rho )=4(1-\rho ^{2})$,两边同取根号可得
$$E\left\vert X^{2}-Y^{2} \right\vert =E\left\vert X+Y \right\vert \left\vert X-Y \right\vert \leqslant 2\sqrt{1-\rho ^{2}}$$
再代入回 \eqref{eq:1} ,即可得到
$$
E\max(X^{2},Y^{2})\leqslant \frac{1}{2}\times 2+\frac{1}{2}\times 2\sqrt{1-\rho ^{2}}=1+\sqrt{1-\rho ^{2}}
$$
\end{proof}
}
\questionandanswer[]{设随机变量$(X,Y)$服从均匀分布$U(D)$,其中$D=\{ (x,y)\ |\ x^{2}+y^{2}\leqslant 1 \}$,求$X$$Y$的协方差。}{
\begin{proof}[解]
$p(x,y)$表示随机变量$(X,Y)$的联合概率密度函数,则可以得到
$$
p(x,y)=\begin{cases}
\frac{1}{\pi },\quad & (x,y)\in D \\
0,\quad & (x,y)\not \in D \\
\end{cases}
$$
$$
EX=\iint xp(x,y)\mathrm{d}x\mathrm{d}y=\iint_{D}x \cdot \frac{1}{\pi }\mathrm{d}x\mathrm{d}y\xlongequal{\textit{对称性}} 0
$$
$$
EY=\iint yp(x,y)\mathrm{d}x\mathrm{d}y=\iint_{D}y \cdot \frac{1}{\pi }\mathrm{d}x\mathrm{d}y\xlongequal{\textit{对称性}} 0
$$
$$
EXY=\iint xyp(x,y)\mathrm{d}x\mathrm{d}y=\iint_{D}xy \cdot \frac{1}{\pi }\mathrm{d}x\mathrm{d}y\xlongequal{\textit{对称性}} 0
$$
所以$X$$Y$的协方差为
$$
\operatorname{Cov}(X,Y)=EXY-EXEY=0
$$
\end{proof}
}
\questionandanswer[]{设随机变量$(X,Y)$服从均匀分布$U(D)$,其中$D=\{ (x,y)\ |\ 0<x<y<1 \}$,求相关系数$\operatorname{Corr}(X,Y)$}{
\begin{proof}[解]
$p(x,y)$表示随机变量$(X,Y)$的联合概率密度函数,则可以得到
$$
p(x,y)=\begin{cases}
2,\quad & 0<x<y<1 \\
0,\quad & \textit{其他} \\
\end{cases}
$$
$$
EX=\iint xp(x,y)\mathrm{d}x\mathrm{d}y=\iint_{D}x\cdot 2\mathrm{d}x\mathrm{d}y=\int_0^{1}\int_0^{y}2x\mathrm{d}x\mathrm{d}y = \frac{1}{3}
$$
$$
EY=\iint yp(x,y)\mathrm{d}x\mathrm{d}y=\iint_{D}y\cdot 2\mathrm{d}x\mathrm{d}y=\int_0^{1}\int_0^{y}2y\mathrm{d}x\mathrm{d}y = \frac{2}{3}
$$
$$
EXY=\iint xyp(x,y)\mathrm{d}x\mathrm{d}y=\iint_{D}xy\cdot 2\mathrm{d}x\mathrm{d}y=\int_0^{1}\int_0^{y}2xy\mathrm{d}x\mathrm{d}y = \frac{1}{4}
$$
所以$X$$Y$的协方差为
$$
\operatorname{Cov}(X,Y)=EXY-EXEY=\frac{1}{4}-\frac{1}{3}\times \frac{2}{3} = \frac{1}{36}
$$
还需要计算
$$
EX^{2}=\iint x^{2}p(x,y)\mathrm{d}x\mathrm{d}y=\iint_{D} x^{2}\cdot 2\mathrm{d}x\mathrm{d}y=\int_0^{1}\int_0^{y}2x^{2}\mathrm{d}x\mathrm{d}y = \frac{1}{6}
$$
$$
EY^{2}=\iint y^{2}p(x,y)\mathrm{d}x\mathrm{d}y=\iint_{D}y^{2}\cdot 2\mathrm{d}x\mathrm{d}y=\int_0^{1}\int_0^{y}2y^{2}\mathrm{d}x\mathrm{d}y = \frac{1}{2}
$$
所以$X$$Y$的相关系数为
$$
\begin{aligned}
\operatorname{Corr}(X,Y)&=\frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}X\cdot \operatorname{Var}Y}}=\frac{\operatorname{Cov}(X,Y)}{\sqrt{(EX^{2}-(EX)^{2})\cdot (EY^{2}-(EY)^{2})}}\\
&=\frac{\dfrac{1}{36}}{\sqrt{\left( \dfrac{1}{6}-\left( \dfrac{1}{3} \right) ^{2} \right) \left( \dfrac{1}{2}-\left( \dfrac{2}{3} \right) ^{2} \right) }} = \dfrac{1}{2}\\
\end{aligned}
$$
\end{proof}
}
\questionandanswer[]{设随机变量$(X,Y)$的联合概率密度函数为$p(x,y)=\begin{cases}
e^{-y},\quad & 0<x<y \\
0,\quad & \text{otherwise} \\
\end{cases}$, 设$y>0$,求在$Y=y$$X$的条件概率密度函数$p_{X|Y}(x|y)$,条件数学期望$E(X|Y=y)$。进一步地,利用重期望公式求$EX$}{
\begin{proof}[解]
先计算边际概率密度函数
$$
p_{Y}(y)=\int_{-\infty}^{+\infty} p(x,y) \mathrm{d}x=\begin{cases}
\int_{0}^{y} e^{-y} \mathrm{d}x,\quad & y>0 \\
0,\quad & y\leqslant 0 \\
\end{cases}=\begin{cases}
ye^{-y},\quad & y>0 \\
0,\quad & y\leqslant 0 \\
\end{cases}
$$
之后计算条件概率密度函数
$$
p_{X|Y}(x|y)=\frac{p(x,y)}{p_{Y}(y)}=\begin{cases}
\frac{1}{y},\quad & 0<x<y \\
0,\quad & 0< y\leqslant x \textit{}y>0,x\leqslant 0 \\
\end{cases}
$$
根据数学期望的定义,
$$
E(X|Y=y)=\int_{-\infty}^{+\infty} x p_{X|Y}(x|y) \mathrm{d}x = \int_{0}^{y} x\cdot \frac{1}{y} \mathrm{d}x = \frac{y}{2}
$$
再利用重期望公式,
$$
EX=\int_{-\infty}^{+\infty} E(X|Y=y)p_{Y}(y) \mathrm{d}y=\int_{0}^{+\infty} \frac{y}{2}\cdot ye^{-y} \mathrm{d}y = 1
$$
\end{proof}
}
\questionandanswer[]{$X$服从指数分布$\operatorname{Exp}(\lambda )$,求$Y=[X]$的分布。(这里符号$[a]$表示不超过$a$的最大整数。}{
\begin{proof}[解]
由于$Y=[X]$是离散型分布,所以求出$Y$的分布列即可
$$
p_i=\int_{i}^{i+1} \lambda e^{-\lambda x} \mathrm{d}x = (e^{\lambda} - 1) e^{- \lambda (i + 1)}
$$
\end{proof}
}
\questionandanswer[]{设随机变量$X$服从标准正态分布$N(0,1)$, $a>0$,记$Y=\begin{cases}
X,\quad & \left\vert X \right\vert <a \\
-X,\quad & \left\vert X \right\vert \geqslant a \\
\end{cases}$,求随机变量$Y$的分布。}{
\begin{proof}[解]
因为$X\sim N(0,1)$,所以$-X\sim N(0,1)$,所以随机变量$Y$服从标准正态分布$N(0,1)$,即
$$
Y\sim N(0,1)
$$
\end{proof}
}
\questionandanswer[]{设二维随机变量$(X,Y)$的联合概率密度函数为 $$
p(x,y)=\begin{cases}
2,\quad & \textit{}0<x<y<1; \\
0,\quad & \textit{其他.} \\
\end{cases}
$$
\begin{enumerate}
\item 随机变量$T=X-Y$的概率密度函数$p_{T}(t)$
\item 概率$P(Y-X\leqslant \frac{1}{2})$
\end{enumerate}
}{
\begin{proof}[解]
\begin{enumerate}
\item
根据连续情形的卷积公式,
$$
p_{T}(t)=\int_{-\infty}^{+\infty} p(x,x-t) \mathrm{d}x=\begin{cases}
\int_{0}^{t+1} 2 \mathrm{d}x,\quad & -1<t<0 \\
0,\quad & t\leqslant -1 \textit{}t\geqslant 0 \\
\end{cases}=\begin{cases}
2t+2,\quad & -1<t<0 \\
0,\quad & t\leqslant -1\textit{}t\geqslant 0 \\
\end{cases}
$$
\item
$$
P(Y-X\leqslant \frac{1}{2})=P(X-Y\geqslant \frac{1}{2})=P(T\geqslant \frac{1}{2})=0
$$
\end{enumerate}
\end{proof}
}
\questionandanswer[]{$X$$Y$独立同分布,共同分布为$N(0,1)$,求概率$P(\left\vert X+Y \right\vert \leqslant \left\vert X-Y \right\vert )$}{
\begin{proof}[解]
% 根据正态分布的可加性,
% $$
% X+Y\sim N(0,2),\quad X-Y\sim N(0,2)
% $$
% 又因为
% $$
% \begin{aligned}
% p_{(X+Y,X-Y)}(u,v) & = p_{(X,Y)} \left(\frac{u+v}{2},\frac{u-v}{2}\right) \left\vert J(u,v) \right\vert \\
% & = p_{X} \left( \frac{u+v}{2} \right) p_{Y} \left( \frac{u-v}{2} \right) \begin{vmatrix}
% \frac{1}{2} & \frac{1}{2} \\
% \frac{1}{2} & -\frac{1}{2} \\
% \end{vmatrix}\\
% &=\frac{1}{2}\varphi\left(\frac{u+v}{2}\right)\varphi\left(\frac{u-v}{2}\right)\\
% &=\frac{1}{2}\cdot \frac{1}{\sqrt{2\pi }}e^{-\frac{1}{2} \left( \frac{u+v}{2} \right) ^{2}}\cdot \frac{1}{\sqrt{2\pi }}e^{-\frac{1}{2}\left( \frac{u-v}{2} \right) ^{2}} \\
% &=\frac{1}{\sqrt{2\pi }\cdot \sqrt{2}}\frac{1}{\sqrt{2\pi }\cdot \sqrt{2}}e^{-\frac{1}{8}\left( 2u^{2}+2v^{2} \right) } \\
% &=\frac{1}{\sqrt{2\pi }\sqrt{2}}e^{-\frac{u^{2}}{2\cdot 2}}\cdot \frac{1}{\sqrt{2\pi }\sqrt{2}}e^{-\frac{v^{2}}{2\cdot 2}} \\
% &=p_{X+Y}(u)\cdot p_{X-Y}(v) \\
% \end{aligned}
% $$
% 所以$X+Y$与$X-Y$相互独立,从而独立同分布,所以$\left\vert X+Y \right\vert $与$\left\vert X-Y \right\vert $也独立同分布,
% 设他们的概率密度函数为$p_1(x)$,则根据独立同分布的可加性,$\left\vert X+Y \right\vert -\left\vert X-Y \right\vert $的概率密度函数可表示为$p_2(x)=p_1(x)+p_1(-x)$,是偶函数,于是
% $$
% P(\left\vert X+Y \right\vert \leqslant \left\vert X-Y \right\vert )=P(\left\vert X+Y \right\vert -\left\vert X-Y \right\vert \leqslant 0) = \frac{1}{2}
% $$
$$
\begin{aligned}
P(\left\vert X+Y \right\vert \leqslant \left\vert X-Y \right\vert ) & = P\left( (X+Y)^{2}\leqslant (X-Y)^{2} \right) \\
& = P(X^{2}+2XY+Y^{2}\leqslant X^{2}-2XY+Y^{2}) \\
& = P(4XY\leqslant 0) \\
& = P(XY\leqslant 0) \\
&=P(X\leqslant 0,Y>0) + P(X>0,Y\leqslant 0) \\
&\xlongequal{X\textit{}Y\textit{}独立}P(X\leqslant 0)P(Y>0)+P(X>0)P(Y\leqslant 0) \\
&\xlongequal{X\sim N(0,1),Y\sim N(0,1)}\frac{1}{2}\times \frac{1}{2}+\frac{1}{2}\times \frac{1}{2} \\
&=\frac{1}{2} \\
\end{aligned}
$$
\end{proof}
}
\end{enumerate}
\end{document}