SchoolWork-LaTeX/概率论/平时作业/单元作业2.tex
423A35C7 5906ac1efc 重构目录层次
0-课程笔记
1-平时作业
2-实验报告
3-期末大作业
2024-09-02 18:32:58 +08:00

198 lines
8.7 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\begin{document}
\renewcommand{\bar}{\xoverline}
\chapter{单元作业2}
\begin{enumerate}
\item 三人独立地对同一目标进行射击, 各人击中目标的概率分别是0.7, 0.8, 0.6, 求目标被击中的概率.
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&将三人击中目标的事件分别表示为A、B、C \\
&则P(A)=0.7, P(B)=0.8, P(C)=0.6, \\
&P(目标被击中) = P(A\cup B\cup C) \\
&\because 三人独立射击 \\
&\therefore A、B、C相互独立 \\
&\therefore \bar{A}\bar{B}\bar{C}相互独立 \\
\end{aligned}
$$ $$
\begin{aligned}
\therefore P(A\cup B\cup C)&=P(\overline{\bar{A} \bar{B} \bar{C}}) = 1 - P(\bar{A} \bar{B} \bar{C}) \\
&=1 - P(\bar{A})P(\bar{B})P(\bar{C}) \\
&=1 - (1-P(A))(1-P(B))(1-P(C)) \\
&=1-(1-0.7)*(1-0.8)*(1-0.6) \\
&= 0.976 \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 制作某个产品有两个关键工序, 第一道和第二道工序的不合格品的概率分别为3\%和5\%, 假定两道工序互不影响, 试问该产品为不合格品的概率(答案保留至小数点后4位).
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&令A第一道工序不合格B第二道工序不合格 \\
&则P(A)=0.03P(B)=0.05 \\
&则P(该产品为不合格品)=P(A\cup B) \\
&\because 两道工序互不影响 \\
&\therefore A与B相互独立 \\
&\therefore \bar{A}\bar{B}相互独立 \\
\end{aligned}
$$
$$
\begin{aligned}
\therefore P(A\cup B)&=P(\overline{\bar{A}\bar{B}})=1-P(\bar{A}\bar{B}) \\
&=1-P(\bar{A})P(\bar{B}) \\
&=1- (1-P(A))(1-P(B)) \\
&=1-(1-0.03)(1-0.05) \\
&= 0.0785 \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\myitem{甲乙丙三个同学同时独立参加考试, 不及格的概率分别为: 0.2, 0.3, 0.4,}{
\item 求恰有2位同学不及格的概率\label{1}
\item 若已知3位同学中有2位不及格,求其中1位是同学乙的概率. \label{2}
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&设A、B、C分别表示事件甲不合格、乙不合格、丙不合格 \\
&则P(A)=0.2, P(B)=0.3, P(C)=0.4 \\
&P(\bar{A})=0.8, P(\bar{B})=0.7, P(\bar{C})=0.6 \\
&且A、B、C相互独立 \\
\end{aligned}
$$
\ref{1}
$$
\begin{aligned}
P(恰有2位同学不合格)&=P(AB \bar{C}+A \bar{B} C+\bar{A}BC) \\
&=P(A)P(B)P(\bar{C})+P(A)P(\bar{B})P(C)+P(\bar{A})P(B)P(C) \\
&=0.2\times 0.3\times 0.6+0.2\times 0.7\times 0.4+0.8\times 0.3\times 0.4 \\
&= 0.188 \\
\end{aligned}
$$
\ref{2}
\setlength{\lineskip}{2.5pt}
\setlength{\lineskiplimit}{2.5pt}
$$
\begin{aligned}
% \setstretch{1.5}
P(其中1位是同学乙)&=P(\left. B\ \right|\ 恰有2位同学不合格) \\
&=\frac{P(B\cap 恰有2位同学不合格)}{P(恰有2位同学不合格)} \\
&=\frac{P(AB \bar{C} + \bar{A} BC)}{P(AB \bar{C}+A \bar{B}C+\bar{A}BC)} \\
&=\frac{P(A)P(B)P(\bar{C})+P(\bar{A})P(B)P(C)}{P(A)P(B)P(\bar{C})+P(A)P(\bar{B})P(C)+P(\bar{A})P(B)P(C)} \\
&=\frac{0.2\times 0.3\times 0.6+0.8\times 0.3\times 0.4}{0.2\times 0.3\times 0.6+0.2\times 0.7\times 0.4+0.8\times 0.3\times 0.4} \\
&= \frac{33}{47} \\
&\approx 0.702127659574468 \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
}
\item 甲袋中装有2个白球和4个黑球, 乙袋中装有3个白球和2个黑球, 现随机地从乙袋中取出一球放入甲袋, 然后从甲袋中随机取出一球, 试求从甲袋中取得的球是白球的概率.
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&设A表示从乙袋中取出的是白球B表示从甲袋中取出的是白球 \\
则P(B) &= P(A)P(B|A)+P(\bar{A})P(B|\bar{A}) \\
&=\frac{3}{3+2}\times \frac{2+1}{2+4+1}+\frac{2}{3+2}\times \frac{2}{2+4+1} \\
&= \frac{13}{35} \\
&\approx 0.371428571428571 \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 设n只罐子的每一只中装有4个白球和6个黑球, 另有一只罐子中装有5个白球和5个黑球.从这n+1个罐子中随机地选择一只罐子, 从中任取两个球, 结果发现两个都是黑球. 已知在此条件下, 有5个白球和3个黑球留在选出的罐子中的条件概率是1/7, 求n的值.
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&设A表示事件选中的是第n+1个罐子 \\
&设B表示事件取出的两个都是黑球 \\
&则事件:有5个白球和3个黑球留在选出的罐子中,\\
&即选中的是第n+1个罐子,并且取出的两个都是黑球, 可表示为AB\\
&\therefore P(A|B)=\frac{1}{7}, P(A)=\frac{1}{n+1} \\
& P(B|A)=\frac{\mathrm{C}_{5}^{2}}{\mathrm{C}_{10}^{2}}=\frac{2}{9} \\
\therefore P(B)&=P(A)P(B|A)+P(\bar{A})P(B|\bar{A})\\
&=\frac{1}{n+1}\times \frac{\mathrm{C}_{5}^{2}}{\mathrm{C}_{10}^{2}}+\frac{n}{n+1}\times \frac{\mathrm{C}_{6}^{2}}{\mathrm{C}_{10}^{2}} \\
&=\frac{3 n + 2}{9 (n + 1)} \\
% &\because A与B相互独立 \\
\therefore P(A|B)&=\frac{P(A)P(B|A)}{P(B)} \\
&=\frac{\frac{1}{n+1}\times \frac{2}{9}}{\frac{3n+2}{9(n+1)}} \\
&= \frac{2}{3 n + 2} = \frac{1}{7} \\
&\therefore n=4 \\
% solve(latex2sympy(r"\frac{2}{3 n + 2} = \frac{1}{7}")) = {n: 4} = []
% solve(latex2sympy(r"\frac{1}{2} = n"))
% var["n"]
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 设有三张卡片, 第一张两面皆为红色, 第二张两面皆为黄色, 第三张一面是红色一面是黄色. 随机地选择一张卡片并随机地选择其中一面. 如果已知此面是红色, 求另一面也是红色的概率.
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&设A、B、C分别表示选到了第一、二、三张卡片设R表示选择的一面是红色。 \\
&则P(A) = P(B) = P(C) = \frac{1}{3} \\
&P(R|A)=1, P(R|B)=0, P(R|C)=\frac{1}{2} \\
\end{aligned}
$$
$$
\begin{aligned}
则P(另一面也是红色) &= P(A|R) \\
&=\frac{P(A)P(R|A)}{P(A)P(R|A)+P(B)P(R|B)+P(C)P(R|C)} \\
&=\frac{\frac{1}{3}\times 1}{\frac{1}{3}\times 1+\frac{1}{3}\times 0+\frac{1}{3}\times \frac{1}{2}} \\
&= \frac{2}{3} \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 从装有r个红球和w个白球的盒子中不返回的取出两只, 求事件“第一只为红球, 第二只为白球”的概率.
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&设A表示取出的两只球一红一白 \\
&则P(第一只为红球,第二只为白球) = \frac{P(A)}{\mathrm{P}_{2}^{2}} \\
&=\frac{\frac{\mathrm{C}_{r}^{1}\mathrm{C}_{w}^{1}}{\mathrm{C}_{r+w}^{2}}}{\mathrm{P}_{2}^{2}} \\
&=\frac{\frac{\binom{r}{1}\binom{w}{1}}{\binom{r+w}{2}}}{2!} \\
&= \frac{r w}{(r + w) (r + w - 1)} \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item 已知$P(A)=\frac{1}{4}, P(B|A)=\frac{1}{3},P(A|B)=\frac{1}{2}$,求概率$P(A\cup B)$
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&P(AB) = P(B|A)P(A) = \frac{1}{3}\times \frac{1}{4} = \frac{1}{12} \\
&P(B)=\frac{P(AB)}{P(A|B)}=\frac{\frac{1}{12}}{\frac{1}{2}} = \frac{1}{6} \\
&\therefore P(A\cup B)=P(A)+P(B)-P(AB) \\
&=\frac{1}{4}+\frac{1}{6} - \frac{1}{12} \\
&= \frac{1}{3} \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\item$P(A)=P(B)=\frac{1}{3},P(A|B)=\frac{1}{6}$,求概率$P(\bar{A}|\bar{B})$
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
&P(AB)=P(B)P(A|B)=\frac{1}{3}\times \frac{1}{6} = \frac{1}{18} \\
&P(\bar{A} \bar{B})=P(\overline{A\cup B}) = 1 - P(A\cup B)=1 - (P(A)+P(B)-P(AB))\\
&=1 - (\frac{1}{3}+\frac{1}{3}-\frac{1}{18}) = \frac{7}{18}\\
&P(\bar{B}) = 1-P(B) = 1 - \frac{1}{3} = \frac{2}{3} \\
&\therefore P(\bar{A}|\bar{B})=\frac{P(\bar{A} \bar{B})}{P(\bar{B})}=\frac{\frac{7}{18}}{\frac{2}{3}} = \frac{7}{12} \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\end{enumerate}
\end{document}