SchoolWork-LaTeX/数理统计/平时作业/第四周作业.tex
423A35C7 5906ac1efc 重构目录层次
0-课程笔记
1-平时作业
2-实验报告
3-期末大作业
2024-09-02 18:32:58 +08:00

183 lines
11 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\input{mysubpreamble}
\begin{document}
\setcounter{chapter}{5}
\setcounter{section}{4}
\section{充分统计量}
\begin{enumerate}
\questionandanswerProof[1]{
$x_1,x_2, \cdots ,x_n$是来自几何分布
$$
P(X=x)=\theta(1-\theta)^{x},\quad x=0,1,2, \cdots
$$
的样本,证明 $\displaystyle T=\sum_{i=1}^{n} x_i$是充分统计量。
}{
$$
p(x_1,x_2, \cdots ,x_n;\theta)=\prod_{i=1}^{n} \theta(1-\theta)^{x_i}=\theta^{n}(1-\theta)^{\sum_{i=1}^{n} x_i}=\theta^{n}(1-\theta)^{T}
$$
$g(T,\theta)=\theta^{n}(1-\theta)^{T}, h(X)=1$
由因子分解定理可知 $\displaystyle T=\sum_{i=1}^{n} x_i$$\theta$的充分统计量。
}
\questionandanswer[3]{
设总体为如下离散分布:
\begin{tabular}{c|cccc}
$x$ & $a_1$ & $a_2$ & $\cdots$ & $a_k$ \\
\hline
$p$ & $p_1$ & $p_2$ & $\cdots$ & $p_k$ \\
\end{tabular}
$x_1,x_2, \cdots ,x_n$是来自该总体的样本,
}{}
\begin{enumerate}
\questionandanswerProof[]{
证明次序统计量$(x_{(1)},x_{(2)}, \cdots , x_{(n)})$是充分统计量;
}{
$T=(x_{(1)},x_{(2)}, \cdots , x_{(n)})$$X$表示一次取样。则
$$
\begin{aligned}
P(X=(x_1,x_2, \cdots ,x_n)|T=t) &= \frac{P(X=(x_1,x_2, \cdots ,x_n), T=t)}{P(T=t)} \\
&=\frac{\prod_{i=1}^{n} p_{i}}{\mathrm{P}_{n}^{n}\prod_{i=1}^{n} p_{i}}=\frac{1}{\mathrm{P}_{n}^{n}}=\frac{1}{n!} \\
\end{aligned}
$$
可见与$T$无关,所以次序统计量$(x_{(1)},x_{(2)}, \cdots , x_{(n)})$是充分统计量。
}
\questionandanswer[]{
$n_j$表示$x_1,x_2, \cdots ,x_n$中等于$a_j$的个数,证明$(n_1,n_2, \cdots ,n_k)$是充分统计量。
}{
$T=(n_1,n_2, \cdots , n_k)$$X$表示一次取样。则
$$
\begin{aligned}
P(X=(x_1,x_2, \cdots ,x_n)|T=t) &= \frac{P(X=(x_1,x_2, \cdots ,x_n), T=t)}{P(T=t)} \\
&=\frac{\prod_{j=1}^{n} p_j}{\mathrm{P}_{n}^{n} \prod_{j=1}^{n} p_j^{n_j}} \\
\end{aligned}
$$
应该与$T$无关,所以$(n_1,n_2, \cdots ,n_k)$是充分统计量。
}
\end{enumerate}
\questionandanswerSolution[8]{
$x_1,x_2, \cdots ,x_n$是来自拉普拉斯Laplace分布
$$
p(x;\theta)=\frac{1}{2\theta} e^{-\frac{\left\vert x \right\vert }{\theta}}, \theta>0
$$
的样本,试给出一个充分统计量。
}{
$X$表示一次取样,则
$$
\begin{aligned}
P(X=(x_1,x_2, \cdots ,x_n);\theta)&=\prod_{i=1}^{n} p(x_i;\theta)=\prod_{i=1}^{n} \frac{1}{2\theta} e^{-\frac{\left\vert x \right\vert }{\theta}} = \left( \frac{1}{2\theta} \right) ^{n} e^{-\frac{1}{\theta}\sum_{i=1}^{n} \left\vert x_i \right\vert }\\
% =\left( \frac{1}{2\theta} \right) ^{n} \left( e^{\sum_{i=1}^{n} \left\vert x_i \right\vert } \right) ^{-\frac{1}{\theta}} \\
\end{aligned}
$$
$T=\displaystyle \sum_{i=1}^{n} \left\vert x_i \right\vert $,则上式$=\displaystyle \left( \frac{1}{2\theta} \right) ^{n} \left( e^{-\frac{T}{\theta}} \right) $。则可以令$g(T,\theta)=\displaystyle \left( \frac{1}{2\theta} \right) ^{n} \left( e^{-\frac{T}{\theta}} \right)$, $h(X)=1$,由因子分解定理可知$T=\displaystyle \sum_{i=1}^{n} \left\vert x_i \right\vert $$\theta$的充分统计量。
}
\questionandanswer[10]{
$x_1,x_2, \cdots ,x_n$是来自正态分布$N(\mu,\sigma^{2})$的样本。
}{}
\begin{enumerate}
\questionandanswerSolution[]{
$\mu$已知时给出$\sigma^{2}$的一个充分统计量。
}{
$$
p(x_1,x_2, \cdots ,x_n; \sigma^{2})=(2\pi\sigma^{2})^{-\frac{n}{2}} \exp \left\{ -\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_i-\mu)^{2}\right\}
$$
所以可以令$\displaystyle T=\sum_{i=1}^{n} (x_i-\mu)^{2}$,则$T$$\sigma^{2}$的一个充分统计量。
}
\questionandanswerSolution[]{
$\sigma^{2}$已知时给出$\mu$的一个充分统计量。
}{
$$
\begin{aligned}
p(x_1,x_2, \cdots ,x_n; \sigma^{2})&=(2\pi\sigma^{2})^{-\frac{n}{2}} \exp \left\{ -\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_i-\mu)^{2}\right\} \\
&=(2\pi \sigma^{2})^{-\frac{n}{2}} \exp \left\{ -\frac{n\mu^{2}}{2\sigma^{2}} \right\} \exp \left\{ -\frac{1}{2\sigma^{2}}\sum_{i=1}^{n} x_i^{2} \right\} \exp \left\{ \frac{\mu}{\sigma^{2}}\sum_{i=1}^{n} x_i \right\} \\
\end{aligned}
$$
% 理论上来说,对于正态分布的参数$\mu$,可以使用样本均值$\displaystyle \bar{x}= \sum_{i=1}^{n} x_i$来估计,但无法使用因子分解定理证明,那只能认为$\bar{x}$是$\mu$的一个充分统计量了。
$\displaystyle T=\sum_{i=1}^{n} x_i$,则$\displaystyle g(\mu, T)=(2\pi \sigma^{2})^{-\frac{n}{2}} \exp \left\{ -\frac{n\mu^{2}}{2\sigma^{2}} \right\}\exp \left\{ \frac{\mu}{\sigma^{2}}T \right\}$$\displaystyle h(\overrightarrow{x})=\exp \left\{ -\frac{1}{2\sigma^{2}}\sum_{i=1}^{n} x_i^{2} \right\} $
所以$T$$\mu$的一个充分统计量。
}
\end{enumerate}
\questionandanswerSolution[11]{
$x_1,x_2, \cdots ,x_n$是来自均匀分布$U(\theta_1, \theta_2)$的样本,试给出一个充分统计量。
}{
$$
p(x_1,x_2, \cdots ,x_n; \theta_1, \theta_2)= \prod_{i=1}^{n} \frac{1}{\theta_2-\theta_1} 1_{[\theta_1, \theta_2]}(x_i)=\left( \frac{1}{\theta_2-\theta_1} \right) ^{n} 1_{[\theta_1,\theta_2]}(x_{(1)}, x_{(n)})
$$
所以$(x_{(1)}, x_{(n)})$是一个充分统计量。
}
\questionandanswerSolution[12]{
$x_1,x_2, \cdots ,x_n$是来自均匀分布$U(\theta,2\theta), \theta>0$的样本,试给出充分统计量。
}{
$$
p(x_1,x_2, \cdots ,x_n; \theta)=\prod_{i=1}^{n} \frac{1}{\theta} 1_{[\theta,2\theta]}(x_i)=\frac{1}{\theta^{n}} 1_{[\theta, 2\theta]}(x_{(1)}, x_{(n)})
$$
所以$(x_{(1)}, x_{(n)})$是一个充分统计量。
}
\questionandanswerSolution[17]{
$\displaystyle \binom{x_i}{y_i}, i=1,2, \cdots ,n$是来自正态分布族
$$
\left\{ N\left( \binom{\theta_1}{\theta_2}, \begin{pmatrix}
\sigma_1^{2} & \rho\sigma_1\sigma_2 \\
\rho\sigma_1\sigma_2 & \sigma_2^{2} \\
\end{pmatrix} \right) \ ;\ -\infty<\theta_1,\theta_2<\infty, \sigma_1,\sigma_2>0,\left\vert \rho \right\vert \leqslant 1 \right\}
$$
的一个二维样本,寻求$(\theta_1,\sigma_1,\theta_2,\sigma_2,\rho)$的充分统计量。
}{
$$
\begin{aligned}
&p\left( \binom{x_i}{y_i};(\theta_1,\sigma_1,\theta_2,\sigma_2,\rho) \right) = \prod_{i=1}^{n} \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^{2}}} \exp \left\{ -\frac{1}{2(1-\rho^{2})}(a_i^{2}+b_i^{2}-2\rho a_i b_i) \right\} \\
&=\left( \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^{2}}} \right) ^{n} \exp \left\{ -\frac{1}{2(1-\rho^{2})} \left( \sum_{i=1}^{n} a_i^{2}+\sum_{i=1}^{n} b_i^{2}-2\rho \sum_{i=1}^{n} a_i b_i \right)\right\} \\
\end{aligned}
$$
其中
$$
\sum_{i=1}^{n} a_i^{2}=\sum_{i=1}^{n} \left( \frac{x_i-\theta_1}{\sigma_1} \right) ^{2}=\frac{1}{\sigma_1^{2}}\sum_{i=1}^{n} (x_i^{2}-2\theta_1 x_i+\theta_1^{2})=\frac{1}{\sigma_1^{2}}\sum_{i=1}^{n} x_i^{2}-\frac{2\theta_1}{\sigma_1^{2}}\sum_{i=1}^{n} x_i+ \frac{\theta_1^{2}}{\sigma_1^{2}}
$$
$$
\sum_{i=1}^{n} b_i^{2}=\sum_{i=1}^{n} \left( \frac{y_i-\theta_2}{\sigma_2} \right) ^{2}=\frac{1}{\sigma_2^{2}}\sum_{i=1}^{n} (y_i^{2}-2\theta_2 y_i+\theta_2^{2})=\frac{1}{\sigma_2^{2}}\sum_{i=1}^{n} y_i^{2}-\frac{2\theta_2}{\sigma_2^{2}}\sum_{i=1}^{n} y_i+\frac{\theta_2^{2}}{\sigma_2^{2}}
$$
$$
\begin{aligned}
&\sum_{i=1}^{n} a_i b_i =\sum_{i=1}^{n} \left( \frac{x_i-\theta_1}{\sigma_1} \right) \left( \frac{y_i-\theta_2}{\sigma_2} \right) =\frac{1}{\sigma_1\sigma_2}\sum_{i=1}^{n} (x_i y_i- \theta_1 y_i - \theta_2 x_i+\theta_1 \theta_2) \\
&=\frac{1}{\sigma_1\sigma_2}\sum_{i=1}^{n} x_i y_i- \frac{\theta_1}{\sigma_1\sigma_2}\sum_{i=1}^{n} y_i - \frac{\theta_2}{\sigma_1\sigma_2}\sum_{i=1}^{n} x_i+\frac{n\theta_1\theta_2}{\sigma_1\sigma_2} \\
\end{aligned}
$$
仔细观察即可发现
$$
\left( \sum_{i=1}^{n} x_i,\ \sum_{i=1}^{n} x_i^{2},\ \sum_{i=1}^{n} y_i,\ \sum_{i=1}^{n} y_i^{2},\ \sum_{i=1}^{n} x_i y_i \right)
$$
是此二维正态分布的充分统计量。
}
\questionandanswerProof[19]{
$x_1,x_2, \cdots ,x_n$是来自两参数指数分布
$$
p(x;\theta,\mu)=\frac{1}{\theta} e^{-\frac{x-\mu}{\theta}}, \quad x>\mu, \theta>0
$$
的样本,证明$(\bar{x},x_{(1)})$是充分统计量。
}{
$$
\begin{aligned}
&p(x_1,x_2, \cdots ,x_n; \theta,\mu)=\prod_{i=1}^{n} \frac{1}{\theta} e^{-\frac{x_i-\mu}{\theta}}=\frac{1}{\theta^{n}} \exp \left\{ -\frac{1}{\theta} \sum_{i=1}^{n} (x_i-\mu) \right\} \\
=&\frac{1}{\theta^{n}} \exp \left\{ -\frac{1}{\theta}\sum_{i=1}^{n} x_i \right\} \exp \left\{ \frac{n\mu}{\theta} \right\} , \quad x_1,x_2, \cdots ,x_n > \mu \\
\end{aligned}
$$
其中$x_1,x_2, \cdots ,x_n>\mu \iff x_{(1)} > \mu$,并且$\displaystyle \sum_{i=1}^{n} x_i=n \bar{x}$
所以$(\bar{x}, x_{(1)})$是充分统计量。
}
\questionandanswerSolution[20]{
设随机变量$Y_i\sim N(\beta_0+\beta_1 x_i, \sigma^{2}), i=1,2, \cdots ,n$,诸$Y_i$独立,$x_1,x_2, \cdots ,x_n$是已知常数,证明$\displaystyle \left( \sum_{i=1}^{n} Y_i,\ \sum_{i=1}^{n} x_i Y_i,\ \sum_{i=1}^{n} Y_i^{2} \right) $是充分统计量。
}{
$$
\begin{aligned}
&p(Y_1,Y_2, \cdots ,Y_n; \beta_0, \beta_1, \sigma^{2})=\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp \left\{ -\frac{1}{2}\left( \frac{Y_i-(\beta_0+\beta_1 x)}{\sigma} \right) ^{2} \right\} \\
=&\left( \frac{1}{\sqrt{2\pi}\sigma} \right) ^{n} \exp \left\{ -\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left( Y_i-\beta_0-\beta_1 x_i \right) ^{2} \right\} \\
\end{aligned}
$$
其中
$$
\sum_{i=1}^{n} (Y_i-\beta_0-\beta_1 x_i)^{2}=\sum_{i=1}^{n} Y_i^{2}+n \beta_0^{2}+n\beta_1^{2}\sum_{i=1}^{n} x_i^{2} - 2\beta_0\sum_{i=1}^{n} Y_i -2\beta_1 \sum_{i=1}^{n} x_i Y_i + \beta_0\beta_1 \sum_{i=1}^{n} x_i
$$
其中$\beta_0,\beta_1, \sigma$为参数,$x_1,x_2, \cdots ,x_n$已知,
所以$\displaystyle \left( \sum_{i=1}^{n} Y_i,\ \sum_{i=1}^{n} x_i Y_i,\ \sum_{i=1}^{n} Y_i^{2} \right) $是充分统计量。
}
\end{enumerate}
\end{document}