SchoolWork-LaTeX/数理统计/平时作业/第七周作业.tex
423A35C7 5906ac1efc 重构目录层次
0-课程笔记
1-平时作业
2-实验报告
3-期末大作业
2024-09-02 18:32:58 +08:00

136 lines
8.0 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\input{mysubpreamble}
\begin{document}
\setcounter{chapter}{6}
\setcounter{section}{3}
\section{最小方差无偏估计}
\begin{enumerate}
\questionandanswerProof[1]{
设总体概率函数是$p(x;\theta), x_1,x_2, \cdots ,x_n$ 是其样本,$T=T(x_1,x_2, \cdots ,x_n)$$\theta$的充分统计量,则对$g(\theta)$的任一估计$\hat{g}$,令$\tilde{g}=E(\hat{g}|T)$,证明:$MSE(\tilde{g})\leqslant MSE(\hat{g})$。这说明,在均方误差准则下,人们只需要考虑基于充分统计量的估计。
}{
$$
\begin{aligned}
\operatorname{MSE}(\hat{g})&=E((\hat{g} - g(\theta))^{2})= E\left( (\hat{g} - \tilde{g} + \tilde{g} -g(\theta))^{2} \right) \\
&=E(\hat{g}-\tilde{g})^{2} + 2E(\hat{g}-\tilde{g})(\tilde{g} - g(\theta) ) + E(\tilde{g}-g(\theta))^{2} \\
&=E(\hat{g} - \tilde{g})^{2}+2E(\hat{g}-\tilde{g})(\tilde{g}-g(\theta))+\operatorname{MSE}(\tilde{g}) \\
\end{aligned}
$$
其中
$$
E(\hat{g}-\tilde{g})(\tilde{g}-g(\theta))=E(E((\hat{g}-\tilde{g})(\tilde{g}-g(\theta))|T))
$$
由于$T$是充分统计量,所以$E(\tilde{g}-g(\theta))$$T$无关,所以
$$
\begin{aligned}
E (\hat{g}-\tilde{g})(\tilde{g}-g(\theta))&=E(\tilde{g}-g(\theta)) E(E(\hat{g}-\tilde{g}|T)) \\
&=[E(\tilde{g}) -E(g(\theta))]E(E(\hat{g}-\tilde{g}|T)) = 0 \\
\end{aligned}
$$
所以
$$
\operatorname{MSE}(\hat{g}) = E(\hat{g}-\tilde{g})^{2}+\operatorname{MSE}(\tilde{g})\geqslant \operatorname{MSE}(\tilde{g})
$$
}
\questionandanswerProof[3]{
$T$$g(\theta)$的UMVUE$\hat{g}$$g(\theta)$的无偏估计,证明:若$\operatorname{Var}(\hat{g})<\infty$,则$\operatorname{Cov}(T,\hat{g})\geqslant 0$
}{
由于$T$$g(\theta)$的UMVUE所以$E(T)=g(\theta), \operatorname{Var}(T)<\infty$;由于$\hat{g}$$g(\theta)$的无偏估计,所以$E(\hat{g})=0$。从而$E(T-\hat{g})=E(T)-E(\hat{g})=0$,且$\operatorname{Var}(T-\hat{g})=\operatorname{Var}(T)+\operatorname{Var}(\hat{g})+\operatorname{Cov}(T,\hat{g})<\infty$(应该不存在方差有限但协方差无限的情况吧),所以根据判断准则,
$$
0=\operatorname{Cov}(T,T-\hat{g})=\operatorname{Var}(T)-\operatorname{Cov}(T,\hat{g})
$$
所以$\operatorname{Cov}(T,\hat{g})=\operatorname{Var}(T)>0$
}
\questionandanswerProof[5]{
设总体$p(x;\theta)$的费希尔信息量存在,若二阶导数$\displaystyle \frac{\partial ^{2}}{\partial \theta^{2}}p(x;\theta)$对一切的$\theta \in \Theta$存在,证明费希尔信息量
$$
I(\theta)=-E\left( \frac{\partial ^{2}}{\partial \theta^{2}}\ln p(x;\theta) \right)
$$
}{
$$
\begin{aligned}
-E\left( \frac{\partial ^{2}}{\partial \theta^{2}} \ln p(x;\theta) \right) =&-\int_{-\infty}^{+\infty} \frac{\partial ^{2} \ln p(x;\theta)}{\partial \theta^{2}} p(x;\theta)\mathrm{d}x \\
=&\int_{-\infty}^{+\infty} \left( \frac{\partial \ln p(x;\theta)}{\partial \theta} \right) ^{2} p(x;\theta) \mathrm{d}x \\
=&\int_{-\infty}^{+\infty} \frac{\partial \ln p(x;\theta)}{\partial \theta} \frac{\partial \ln p(x;\theta)}{\partial p(x;\theta)} \frac{\partial p(x;\theta)}{\partial \theta} p(x;\theta) \mathrm{d}x \\
=&\int_{-\infty}^{+\infty} \frac{\partial \ln p(x;\theta)}{\partial \theta} \frac{1}{p(x;\theta)} \frac{\partial p(x;\theta)}{\partial \theta} p(x;\theta) \mathrm{d}x \\
=&\int_{-\infty}^{+\infty} \frac{\partial \ln p(x;\theta)}{\partial \theta} \frac{\partial p(x;\theta)}{\partial \theta} \mathrm{d}x \\
=& E_{x} \left( \frac{\partial \ln p(x;\theta)}{\partial \theta} \right) ^{2} = I(\theta) \\
\end{aligned}
$$
}
\questionandanswer[6]{
设总体密度函数为$p(x;\theta)=\theta x^{\theta-1}, 0<x<1, \theta>0$, $x_1,x_2, \cdots ,x_n$是样本。
}{}
\begin{enumerate}
\questionandanswerSolution[]{
$g(\theta)=\dfrac{1}{\theta}$的最大似然估计;
}{
对数似然函数为
$$
\ln L(\theta)=\sum_{i=1}^{n} \ln \theta x^{\theta-1}=\sum_{i=1}^{n} \left( \ln \theta+(\theta-1) \ln x_i \right) =n \ln \theta+(\theta-1) \sum_{i=1}^{n} \ln x_i
$$
$\theta$求导并令其为0
$$
\frac{\partial L(\theta)}{\partial \theta} = \frac{n}{\theta}+\sum_{i=1}^{n} x_i = 0
$$
$\theta$的最大似然估计为$\hat{\theta} = \dfrac{n}{\sum_{i=1}^{n} x_i}$,根据最大似然估计的不变性,$g(\theta)=\dfrac{1}{\theta}$的最大似然估计为
$$
\widehat{g(\theta)}=\frac{1}{\hat{\theta}}=\frac{1}{n} \sum_{i=1}^{n} x_i
$$
}
\questionandanswerSolution[]{
$g(\theta)$的有效估计。
}{
可以猜测上一小题中的
$
\widehat{g(\theta)}=\frac{1}{n} \sum_{i=1}^{n} x_i
$
为有效估计,接下来验证一下。
% $$
% \frac{\theta}{\theta+2}-\left( \frac{\theta}{\theta+1} \right) ^{2} = \frac{\theta}{\theta^{3} + 4 \theta^{2} + 5 \theta + 2}
% $$
可以计算得到总体的方差为$\dfrac{1}{\theta^{2}}$,因此 $g(\hat{\theta})=\bar{x}$的方差为$\dfrac{1}{n \theta^{2}} $
由于$\ln p(x;\theta) = \ln \theta +(\theta-1)\ln x$,
$$
\frac{\partial \ln p(x;\theta)}{\partial \theta}=\frac{1}{\theta}+\ln x, \quad \frac{\partial^{2} \ln p(x;\theta)}{\partial \theta^{2}}=-\frac{1}{\theta^{2}}, \quad I(\theta)=-E\left( \frac{\partial ^{2}\ln p(x;\theta)}{\partial \theta^{2}} \right) =\frac{1}{\theta^{2}}
$$
所以$I(\frac{1}{\theta})=\theta^{2}$,所以
$$
\operatorname{Var}(\widehat{g(\theta)})= \frac{1}{n \theta^{2}}=\frac{1}{I(\frac{1}{\theta})}=\frac{1}{I(g(\theta))}
$$
因此$\widehat{g(\theta)}=\frac{1}{n} \sum_{i=1}^{n} x_i$$g(\theta)$的有效估计。
}
\end{enumerate}
\questionandanswerSolution[7]{
设总体密度函数为$\displaystyle p(x;\theta)=\frac{2\theta}{x^{3}} e^{-\frac{\theta}{x^{2}}},x>0,\theta>0$,求$\theta$的费希尔信息量$I(\theta)$
}{
$$
\ln p(x;\theta)=\ln 2+\ln \theta-3\ln x -\frac{\theta}{x^{2}}
$$
$$
\frac{\partial \ln p(x;\theta)}{\partial \theta}=\frac{1}{\theta} - \frac{1}{x^{2}}, \quad \frac{\partial ^{2}\ln p(x;\theta)}{\partial \theta^{2}} = -\frac{1}{\theta^{2}}
$$
所以
$$
I(\theta)=-E\left( \frac{\partial ^{2}\ln p(x;\theta)}{\partial \theta^{2}} \right) =\frac{1}{\theta^{2}}
$$
}
\questionandanswerProof[10]{
$x_1,x_2, \cdots ,x_n$是来自$\operatorname{Ga}(\alpha,\lambda)$的样本,$\alpha>0$已知,试证明$\dfrac{\bar{x}}{\alpha}$$g(\lambda)=\dfrac{1}{\lambda}$的有效估计从而也是UMVUE。
}{
$$
p(x;\lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, x>0; \quad \ln p(x;\lambda)=\alpha\ln \lambda-\ln \Gamma(\alpha)+(\alpha-1)\ln x-\lambda x
$$
$$
\frac{\partial \ln p(x;\lambda)}{\partial \lambda}=\frac{\alpha}{\lambda}-x; \quad \frac{\partial ^{2} \ln p(x;\lambda)}{\partial \lambda^{2}}=-\frac{\alpha}{\lambda^{2}}
$$
所以
$$
I(\lambda)=-E\left( \frac{\partial ^{2}\ln p(x;\lambda)}{\partial \lambda^{2}} \right) =\frac{\alpha}{\lambda^{2}}; \quad \text{C-R下界}=\frac{(g'(\lambda))^{2}}{n I(\lambda)}=\frac{(-\frac{1}{\lambda^{2}})^{2}}{n \frac{\alpha}{\lambda^{2}}} = \frac{1}{\alpha \lambda^{2} n}
$$
由于总体的方差为$\dfrac{\alpha}{\lambda^{2}}$,所以$\bar{x}$的方差为$\dfrac{\alpha}{n \lambda^{2}}$,所以$\dfrac{\bar{x}}{\alpha}$的方差为$\dfrac{1}{n \alpha \lambda^{2}}$等于C-R下界。
}
\end{enumerate}
\end{document}