SchoolWork-LaTeX/数理统计/平时作业/期中考试.tex
423A35C7 5906ac1efc 重构目录层次
0-课程笔记
1-平时作业
2-实验报告
3-期末大作业
2024-09-02 18:32:58 +08:00

264 lines
14 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\input{mysubpreamble}
\begin{document}
\renewcommand{\labelenumii}{(\alph{enumii})}
\setcounter{chapter}{6}
\setcounter{section}{5}
\section*{期中考试}
\begin{enumerate}
\questionandanswer[]{
(10') 设$X_1, \cdots ,X_n (n>6)$是来自指数分布$p(x,\lambda)=\lambda e^{-\lambda x} I(x\geqslant 0)$的样本,其中$\lambda>0$。用$X_{(i)}$表示样本的第$i$个次序统计量。求解:
}{}
\begin{enumerate}
\questionandanswerSolution[]{
$\lambda$的充分统计量$T$
}{
样本联合密度为
$$
p(x_1,x_2, \cdots ;\lambda)=\lambda^{n} e^{-n \bar{x} \lambda} I(x_{(1)}\geqslant 0)
$$
由由因子分解定理知,$T=\bar{x}$$\lambda$的充分统计量。
}
\questionandanswerSolution[]{
$\operatorname{Cov}(X_{(3)}, X_{(6)})$
}{
$Y=\lambda X$,则$Y_1,Y_2, \cdots ,Y_n$为来自$\operatorname{Exp}(1)$的样本,所以$\operatorname{Cov}(X_{(3)},X_{(6)})=\frac{1}{\lambda^{2}}\operatorname{Cov}(Y_{(3)},Y_{(6)})$,下面只需求三个量:$E(Y_{(3)}Y_{(6)}),\ E(Y_{(3)}),\ E(Y_{(6)})$
$$
\begin{aligned}
\because p_{3}(u)&=\frac{n!}{2!(n-3)!} F^{2}(u) [1-F(u)]^{n-3} p(u) \\
&=\frac{n!}{2!(n-3)!} (1-e^{-u})^{2} e^{-(n-2)u} I(u\geqslant 0) \\
\therefore E(Y_{(3)}) &= \int_{0}^{+\infty} u p_3(u) \mathrm{d}u=\int_{0}^{+\infty} \frac{n!}{2!(n-3)!} u(1-e^{-u})^{2} e^{-(n-2)u} \mathrm{d}u \\
&= \frac{n^{4} -3n^{2}+6n -2}{n(n-1)(n-2)} \\
\end{aligned}
$$
同理算出$E(Y_{(6)})$$E(Y_{(3)}Y_{(6)})$后可计算出
$$
\operatorname{Cov}(X_{(3)},X_{(6)})=\frac{1}{\lambda^{2}} \operatorname{Cov}(Y_{(3)},Y_{6})=\frac{1}{\lambda^{2}}\left[ E(Y_{(3)}Y_{(6)}) - E(Y_{(3)})E(Y_{(6)}) \right]
$$
}
\end{enumerate}
\questionandanswer[]{
(15') 设$X_i, \ i=1,2,3$独立且都分别服从$N(i, i^{2})$,利用$X_i$构造下面分布的统计量:
}{}
\begin{enumerate}
\questionandanswer[]{
自由度为3的$\chi^{2}$分布;
}{
$$
\left( \frac{X_1-1}{1} \right) ^{2}+\left( \frac{X_2-2}{2} \right) ^{2}+\left( \frac{X_3-3}{3} \right) ^{2} = \chi^{2}(3)
$$
}
\questionandanswer[]{
自由度为2的$t$分布;
}{
$$
\frac{(X_1-1)\sqrt{2}}{\sqrt{\left( \frac{X_2-2}{2} \right) ^{2}+\left( \frac{X_3-3}{3} \right) ^{2}}} \sim t(2)
$$
}
\questionandanswer[]{
自由度为1, 2的$F$分布。
}{
$$
\frac{\left( \frac{X_1-1}{1} \right) ^{2}}{\left( \frac{X_2-2}{2} \right) ^{2}+\left( \frac{X_3-3}{3} \right) ^{2}} \sim F(1,2)
$$
}
\end{enumerate}
\questionandanswer[3]{
(10') 设$X_1, \cdots ,X_n$是来自均值为$\mu$,方差为$\sigma^{2}$的总体的简单样本。
}{}
\begin{enumerate}
\questionandanswerProof[]{
证明:如果$\sum_{i=1}^{n} a_i=1$,则估计量$\sum_{i=1}^{n} a_i X_i$$\mu$的一个无偏估计量;
}{
$$
E\left( \sum_{i=1}^{n} a_i X_i \right) =\sum_{i=1}^{n} a_i (EX_{i})=\left( \sum_{i=1}^{n} a_i \right) \mu = 1 \cdot \mu = \mu
$$
所以估计量$\sum_{i=1}^{n} a_i X_i$$\mu$的一个无偏估计量。
}
\questionandanswerSolution[]{
在所有这类形式的估计量中求一个最小方差者,并计算其方差。
}{
$$
\operatorname{Var}\left( \sum_{i=1}^{n} a_i X_i \right) =\left( \sum_{i=1}^{n} a_i^{2} \right) \sigma^{2} = \left( \sum_{i=1}^{n} a_i^{2} \cdot \sum_{i=1}^{n} 1^{2} \right) \sigma^{2} \frac{1}{n} \geqslant \left( \sum_{i=1}^{n} a_i \right) ^{2} \sigma^{2}
$$
所以当$\sum_{i=1}^{n} a_i=1$时方差最小,为$\sigma^{2}$
}
\end{enumerate}
\questionandanswer[4]{
(15') 设简单样本$X_1, \cdots ,X_n \sim F$。对给定常数$x_0$,令$F_n(x_0)=\frac{1}{n} \sum_{i=1}^{n} I(X_i \leqslant x_0)$。回答以下问题:
}{}
\begin{enumerate}
\questionandanswerProof[]{
证明$F_n(x_0)$$F(x_0)$的无偏估计;
}{
$$
\begin{aligned}
&\because \sum_{i=1}^{n} I(x_i \leqslant x_0)\text{} n \text{重伯努利的独立和形式} \\
&\therefore E\left( \sum_{i=1}^{n} I(x_i \leqslant x_0) \right) =n E(I (x_1\leqslant x_0)) = nF(x_0) \\
\end{aligned}
$$
}
\questionandanswerProof[]{
证明$F_n(x_0)$$F(x_0)$的相合估计;
}{
由于$E(F_n(x_0))=F(x_0)$, $\operatorname{Var}(F_n(x_0))=\frac{1}{n} F_n(x_0) (1\cdot F(x_0)) \to 0$ $(n \to \infty)$,因此$F_n(x_0)$$F(x_0)$的相合估计。
}
\questionandanswerProof[]{
证明$F_n(x_0)$的渐近正态性。
}{
$$
\begin{aligned}
&\because F_n(x_0) \text{为独立和} \\
&\therefore \text{由中心极限定理知} \sqrt{n} (F_n(x_0)-F(x_0)) \xrightarrow{L} N(0, F(x_0) (1-F(x_0))) \\
\end{aligned}
$$
}
\end{enumerate}
\questionandanswer[5]{
(15') 设随机变量$Y_1, \cdots ,Y_n$满足
$$
Y_i = x_i \beta + \varepsilon_i, \ i=1, \cdots ,n,
$$
其中$x_1, \cdots ,x_n$是固定常数,$\varepsilon_1, \cdots , \varepsilon_n$独立同分布于$N(0, \sigma^{2})$,其中$\sigma^{2}$未知。回答以下问题:
}{}
\begin{enumerate}
\questionandanswerSolution[]{
求关于$(\beta,\sigma^{2})$的一个2维充分统计量。
}{
由于$Y_1,Y_2, \cdots ,Y_n$的联合密度函数为$Y_1 \sim N(x_i\beta, \alpha^{2})$
$$
\begin{aligned}
&L= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2\sigma^{2}}(Y_i-x_i \beta)^{2}} \\
&=\left( \frac{1}{\sqrt{2\pi} \sigma} \right) ^{n} \exp \left\{ -\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (Y_i-x_i\beta)^{2} \right\} \\
&=\left( \frac{1}{\sqrt{2\pi} \sigma} \right) ^{n} \cdot e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} Y_i^{2}} \cdot e^{\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} 2 x_i Y_i \beta} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} x_i^{2} \beta^{2}} \\
\end{aligned}
$$
$T_1=\sum_{i=1}^{n} Y_i^{2}$, $T_2=\sum_{i=1}^{n} x_i Y_i$,有因子分解定理知$(T_1, T_2)$$(\beta, \alpha^{2})$的二维充分统计量。
}
\questionandanswer[]{
$\beta$的MLE并证明它是$\beta$的一个无偏估计;
}{
$\frac{\mathrm{d}L}{\mathrm{d}\beta}=0$,得$-\frac{1}{\sigma^{2}} \sum_{i=1}^{n} (Y_i - x_i \beta) x_i = 0 \implies \hat{\beta}_{ML}=\frac{\sum_{i=1}^{n} Y_i x_i}{\sum_{i=1}^{x} x_i^{2}}=\frac{\overline{Y x}}{ \overline{x ^{2}}}$
$$
\begin{aligned}
E\left( \hat{\beta}_{ML} \right) &=E\left( \frac{1}{\sum_{i=1}^{n} x_i^{2}} \sum_{i=1}^{n} x_i Y_i \right) =\frac{1}{\sum_{i=1}^{n} x_i^{2}} \sum_{i=1}^{n} E(x_i Y_i) = \frac{1}{\sum_{i=1}^{n} x_i^{2}} \sum_{i=1}^{n} x_i (EY_{i}) \\
&=\frac{1}{\sum_{i=1}^{n} x_i^{2}} \sum_{i=1}^{n} x_i(x_i \beta) = \beta \\
\end{aligned}
$$
}
\questionandanswerSolution[]{
$\beta$的MLE的分布。
}{
$$
\hat{\beta}_{ML} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^{2}}
$$
}
\end{enumerate}
\questionandanswer[6]{
(15') 设$X_1, X_2, \cdots , X_n$是来自$N(\mu,1)$的简单随机样本,其中$\mu$未知。用$\bar{X}$表示样本均值。令$p=P(X_1\geqslant 0)$,回答以下问题:
}{}
\begin{enumerate}
\questionandanswerSolution[]{
$p$的极大似然估计$\hat{p}$
}{
因为$\mu$的MLE为$\bar{x}$,而$p = P(X_1\geqslant 0)=P\left( \frac{x_1-\mu}{1} \geqslant -\mu \right) =1-\Phi(-\mu)=\Phi(\mu)$
所以由MLE的不变性知 $\hat{P}_{MLE} = \Phi(\bar{x})$
}
\questionandanswerSolution[]{
$\sqrt{n}(\hat{p}-p)$的极限分布;
}{
因为$\hat{\mu} = \bar{x} \sim N(\mu, \frac{1}{n})$,设$g(x)= \Phi(x)$由Delta方法知
$$
\sqrt{n} \left( \hat{p} - p \right) =\sqrt{n} \left( \Phi(\bar{x}) -\Phi(\mu) \right) = \xrightarrow{L} N(0, \phi^{2}(\mu) \frac{1}{n})
$$
其中$\phi$为标准正态分布的概率密度函数。
}
\questionandanswerSolution[]{
$p$的UMVUE。
}{
$\Phi\left( \sqrt{\frac{n}{n-1}} \cdot \bar{x} \right) $$p$的UMVME。
}
\end{enumerate}
\questionandanswerSolution[]{
(10') 已知总体密度为$p(x;\theta) = \theta^{2} x^{\theta^{2}-1} (\theta>0, 0<x<1)$。若有容量为$n$的样本,求参数$\theta$无偏估计的C-R下界。
}{
$$
\begin{aligned}
&\because &\ln p&=2 \ln \theta + (\theta^{2}-1) \ln x \\
&&\frac{\partial \ln p}{\partial \theta}& = \frac{2}{\theta} + 2\theta \ln x \\
&&\frac{\partial ^{2} \ln p}{\partial \theta^{2}}& = -\frac{2}{\theta^{2}} + 2\ln x \\
&\therefore& I(\theta) &= - E\left( \frac{\partial ^{2}\ln p}{\partial \theta^{2}} \right) =\frac{2}{\theta^{2}} - 2E(\ln x) \\
&&&=\frac{2}{\theta^{2}} - 2\int_{0}^{1} \ln x \cdot \theta^{2} x^{\theta^{2}-1} \mathrm{d}x = \frac{2}{\theta^{2}} + \frac{2}{\theta^{2}} = \frac{4}{\theta^{2}} \\
&\therefore&& \text{C-R下界为} \frac{1}{nI(\theta)} = \frac{\theta^{2}}{4n} \\
\end{aligned}
$$
}
\questionandanswerSolution[8]{
$X_1, \cdots ,X_n$是来自泊松分布Poisson($\lambda$)(其中$\lambda >0$)的一个样本。参数$\lambda$的先验分布是$\phi(\lambda)=e^{-\lambda}$(其中$\lambda>0$),求$\lambda$的后验密度和贝叶斯估计。
}{
后验分布为
$$
\begin{aligned}
h(\theta |X_1, \cdots ,X_n) &= c \prod_{i=1}^{n} f(x_i |\lambda) \cdot \pi(\lambda) \\
&=\frac{\lambda^{X_1+X_2+ \cdots +X_n}}{x_1! x_2!\cdots X_n!} e^{-n\lambda} e^{-\lambda} \\
&=c \lambda^{\sum_{i=1}^{n} x_i} e^{-(n+1) \lambda} \sim \operatorname{Ga}\left( \sum_{i=1}^{n} x_i +1, n+1 \right) \\
\end{aligned}
$$
后验均值为贝叶斯估计 $\displaystyle \hat{\lambda} = \frac{\sum_{i=1}^{n} x_i + 1}{n+1}$
}
\end{enumerate}
\subsection*{附加题}
\begin{enumerate}
\questionandanswer[]{
(10') 设$X_1, \cdots X_n, X_{n+1}$是来自$N(\mu,\sigma^{2})$的样本,记$\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i, \ S_n^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i-\bar{X}_n)^{2}$。求解:
}{}
\begin{enumerate}
\questionandanswerSolution[]{
常数$a$$b$使得$T=(a X_{n+1} + b \bar{X}_n)/S_n$服从$t$分布,并指出$t$分布的自由度;
}{
$T=(a X_{n+1} + b \bar{X}_n)/S_n$服从$t$分布,则因为$X_{n+1}, \bar{X}_n$都与$S_n$独立,所以
$$
\begin{aligned}
ET=0 &\implies a E(X_{n+1}) + b(\bar{X}_{n}) = 0 \\
&\implies a \mu + b \mu =0 \implies a = -b \\
\end{aligned}
$$
又因为$\displaystyle \frac{(\bar{X}_n - X_{n+1})}{\sqrt{\frac{n+1}{n} }\sigma}=\frac{\bar{X}_n - \mu-(X_{n+1}-\mu)}{\sqrt{\frac{n+1}{n}} \sigma}\sim N(0,1)$$\displaystyle \frac{(n-1) S_n^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$,所以
$$
T=\left.\frac{(\bar{X}_n-X_{n+1})}{\sqrt{\frac{n+1}{n}}\sigma} \middle/ \sqrt{\frac{(n-1)S_n^{2}}{\sigma^{2}(n-1)}}\right. \sim t(n-1)
$$
整理得
$
\displaystyle \sqrt{\frac{n}{n+1}} (\bar{X}_n-X_{n+1}) /S_n \sim t(n-1)
$\\
$a=\pm \sqrt{\frac{n}{n+1}}$, $b=\mp \sqrt{\frac{n}{n+1}}$,自由度为$n-1$
}
\questionandanswerSolution[]{
计算$\mathbb{E}(S_n^{3})$
}{
$$
\begin{aligned}
&\because X = \frac{(n-1)S_n^{2}}{\sigma^{2}} \sim \chi^{2}(n-1) \\
&\therefore X\text{的密度函数为} p(x)= \frac{\left( \frac{1}{2} \right) ^{\frac{n-1}{2}}}{\Gamma\left( \frac{n-1}{2} \right) }x^{\frac{n}{2}-1} e^{-\frac{x}{2}}\ (x>0) \\
\end{aligned}
$$
$y=\sqrt{x}$,则$Y=\sqrt{X}$的密度函数为
$$
g(y)= p(x) \frac{\mathrm{d}x}{\mathrm{d}y} =p(x) \cdot 2y = p(y^{2})\cdot 2y = \frac{\left( \frac{1}{2} \right) ^{\frac{n-1}{2}}}{\Gamma\left( \frac{n-1}{2} \right) } \cdot 2y^{n-2} \cdot y \cdot e^{-\frac{y^{2}}{2}}
$$
$$
\begin{aligned}
E(Y^{3}) &= \int_{0}^{+\infty} y^{3}g(y) \mathrm{d}y = \int_{0}^{+\infty} \frac{2\left( \frac{1}{2} \right) ^{\frac{n-1}{2}}}{\Gamma\left( \frac{n-1}{2} \right) } y^{n+1} \cdot e^{-\frac{y^{2}}{2}} \mathrm{d}y \\
&=\frac{2^{\frac{n+1}{2}}}{\Gamma\left( \frac{n-1}{2} \right) } \int_{0}^{+\infty} y^{n+1} e^{-\frac{y^{2}}{2}} \mathrm{d}y = \begin{cases}
\frac{2^{\frac{n+1}{2}}}{\Gamma\left( \frac{n-1}{2} \right) } (2k-1)!!,\quad & n=2k-1 \\
\frac{2^{\frac{n+1}{2}}}{\Gamma\left( \frac{n-1}{2} \right) } (2k)!!,\quad & n=2k \\
\end{cases}
\end{aligned}
$$
$\displaystyle \sqrt{\frac{(n-1)S_n^{2}}{\sigma^{2}}}=Y \implies E S_n^{3}=\left( \frac{\sigma}{\sqrt{n-1}} \right) ^{3} \cdot E(Y^{3})$代入即得。
}
\end{enumerate}
\end{enumerate}
\textbf{注:}正常题总分为100分附加题总分为10分。总评分为两者之和但总评分不超过100分。
\end{document}