\documentclass[全部作业]{subfiles} \input{mysubpreamble} \begin{document} \renewcommand{\labelenumii}{(\alph{enumii})} \setcounter{chapter}{6} \setcounter{section}{5} \section*{期中考试} \begin{enumerate} \questionandanswer[]{ (10') 设$X_1, \cdots ,X_n (n>6)$是来自指数分布$p(x,\lambda)=\lambda e^{-\lambda x} I(x\geqslant 0)$的样本,其中$\lambda>0$。用$X_{(i)}$表示样本的第$i$个次序统计量。求解: }{} \begin{enumerate} \questionandanswerSolution[]{ $\lambda$的充分统计量$T$; }{ 样本联合密度为 $$ p(x_1,x_2, \cdots ;\lambda)=\lambda^{n} e^{-n \bar{x} \lambda} I(x_{(1)}\geqslant 0) $$ 由由因子分解定理知,$T=\bar{x}$为$\lambda$的充分统计量。 } \questionandanswerSolution[]{ $\operatorname{Cov}(X_{(3)}, X_{(6)})$。 }{ 设$Y=\lambda X$,则$Y_1,Y_2, \cdots ,Y_n$为来自$\operatorname{Exp}(1)$的样本,所以$\operatorname{Cov}(X_{(3)},X_{(6)})=\frac{1}{\lambda^{2}}\operatorname{Cov}(Y_{(3)},Y_{(6)})$,下面只需求三个量:$E(Y_{(3)}Y_{(6)}),\ E(Y_{(3)}),\ E(Y_{(6)})$。 $$ \begin{aligned} \because p_{3}(u)&=\frac{n!}{2!(n-3)!} F^{2}(u) [1-F(u)]^{n-3} p(u) \\ &=\frac{n!}{2!(n-3)!} (1-e^{-u})^{2} e^{-(n-2)u} I(u\geqslant 0) \\ \therefore E(Y_{(3)}) &= \int_{0}^{+\infty} u p_3(u) \mathrm{d}u=\int_{0}^{+\infty} \frac{n!}{2!(n-3)!} u(1-e^{-u})^{2} e^{-(n-2)u} \mathrm{d}u \\ &= \frac{n^{4} -3n^{2}+6n -2}{n(n-1)(n-2)} \\ \end{aligned} $$ 同理算出$E(Y_{(6)})$与$E(Y_{(3)}Y_{(6)})$后可计算出 $$ \operatorname{Cov}(X_{(3)},X_{(6)})=\frac{1}{\lambda^{2}} \operatorname{Cov}(Y_{(3)},Y_{6})=\frac{1}{\lambda^{2}}\left[ E(Y_{(3)}Y_{(6)}) - E(Y_{(3)})E(Y_{(6)}) \right] $$ } \end{enumerate} \questionandanswer[]{ (15') 设$X_i, \ i=1,2,3$独立且都分别服从$N(i, i^{2})$,利用$X_i$构造下面分布的统计量: }{} \begin{enumerate} \questionandanswer[]{ 自由度为3的$\chi^{2}$分布; }{ $$ \left( \frac{X_1-1}{1} \right) ^{2}+\left( \frac{X_2-2}{2} \right) ^{2}+\left( \frac{X_3-3}{3} \right) ^{2} = \chi^{2}(3) $$ } \questionandanswer[]{ 自由度为2的$t$分布; }{ $$ \frac{(X_1-1)\sqrt{2}}{\sqrt{\left( \frac{X_2-2}{2} \right) ^{2}+\left( \frac{X_3-3}{3} \right) ^{2}}} \sim t(2) $$ } \questionandanswer[]{ 自由度为1, 2的$F$分布。 }{ $$ \frac{\left( \frac{X_1-1}{1} \right) ^{2}}{\left( \frac{X_2-2}{2} \right) ^{2}+\left( \frac{X_3-3}{3} \right) ^{2}} \sim F(1,2) $$ } \end{enumerate} \questionandanswer[3]{ (10') 设$X_1, \cdots ,X_n$是来自均值为$\mu$,方差为$\sigma^{2}$的总体的简单样本。 }{} \begin{enumerate} \questionandanswerProof[]{ 证明:如果$\sum_{i=1}^{n} a_i=1$,则估计量$\sum_{i=1}^{n} a_i X_i$是$\mu$的一个无偏估计量; }{ $$ E\left( \sum_{i=1}^{n} a_i X_i \right) =\sum_{i=1}^{n} a_i (EX_{i})=\left( \sum_{i=1}^{n} a_i \right) \mu = 1 \cdot \mu = \mu $$ 所以估计量$\sum_{i=1}^{n} a_i X_i$是$\mu$的一个无偏估计量。 } \questionandanswerSolution[]{ 在所有这类形式的估计量中求一个最小方差者,并计算其方差。 }{ $$ \operatorname{Var}\left( \sum_{i=1}^{n} a_i X_i \right) =\left( \sum_{i=1}^{n} a_i^{2} \right) \sigma^{2} = \left( \sum_{i=1}^{n} a_i^{2} \cdot \sum_{i=1}^{n} 1^{2} \right) \sigma^{2} \frac{1}{n} \geqslant \left( \sum_{i=1}^{n} a_i \right) ^{2} \sigma^{2} $$ 所以当$\sum_{i=1}^{n} a_i=1$时方差最小,为$\sigma^{2}$。 } \end{enumerate} \questionandanswer[4]{ (15') 设简单样本$X_1, \cdots ,X_n \sim F$。对给定常数$x_0$,令$F_n(x_0)=\frac{1}{n} \sum_{i=1}^{n} I(X_i \leqslant x_0)$。回答以下问题: }{} \begin{enumerate} \questionandanswerProof[]{ 证明$F_n(x_0)$是$F(x_0)$的无偏估计; }{ $$ \begin{aligned} &\because \sum_{i=1}^{n} I(x_i \leqslant x_0)\text{为} n \text{重伯努利的独立和形式} \\ &\therefore E\left( \sum_{i=1}^{n} I(x_i \leqslant x_0) \right) =n E(I (x_1\leqslant x_0)) = nF(x_0) \\ \end{aligned} $$ } \questionandanswerProof[]{ 证明$F_n(x_0)$是$F(x_0)$的相合估计; }{ 由于$E(F_n(x_0))=F(x_0)$, $\operatorname{Var}(F_n(x_0))=\frac{1}{n} F_n(x_0) (1\cdot F(x_0)) \to 0$ $(n \to \infty)$,因此$F_n(x_0)$是$F(x_0)$的相合估计。 } \questionandanswerProof[]{ 证明$F_n(x_0)$的渐近正态性。 }{ $$ \begin{aligned} &\because F_n(x_0) \text{为独立和} \\ &\therefore \text{由中心极限定理知} \sqrt{n} (F_n(x_0)-F(x_0)) \xrightarrow{L} N(0, F(x_0) (1-F(x_0))) \\ \end{aligned} $$ } \end{enumerate} \questionandanswer[5]{ (15') 设随机变量$Y_1, \cdots ,Y_n$满足 $$ Y_i = x_i \beta + \varepsilon_i, \ i=1, \cdots ,n, $$ 其中$x_1, \cdots ,x_n$是固定常数,$\varepsilon_1, \cdots , \varepsilon_n$独立同分布于$N(0, \sigma^{2})$,其中$\sigma^{2}$未知。回答以下问题: }{} \begin{enumerate} \questionandanswerSolution[]{ 求关于$(\beta,\sigma^{2})$的一个2维充分统计量。 }{ 由于$Y_1,Y_2, \cdots ,Y_n$的联合密度函数为$Y_1 \sim N(x_i\beta, \alpha^{2})$, $$ \begin{aligned} &L= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2\sigma^{2}}(Y_i-x_i \beta)^{2}} \\ &=\left( \frac{1}{\sqrt{2\pi} \sigma} \right) ^{n} \exp \left\{ -\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (Y_i-x_i\beta)^{2} \right\} \\ &=\left( \frac{1}{\sqrt{2\pi} \sigma} \right) ^{n} \cdot e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} Y_i^{2}} \cdot e^{\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} 2 x_i Y_i \beta} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} x_i^{2} \beta^{2}} \\ \end{aligned} $$ 设$T_1=\sum_{i=1}^{n} Y_i^{2}$, $T_2=\sum_{i=1}^{n} x_i Y_i$,有因子分解定理知$(T_1, T_2)$为$(\beta, \alpha^{2})$的二维充分统计量。 } \questionandanswer[]{ 求$\beta$的MLE并证明它是$\beta$的一个无偏估计; }{ 令$\frac{\mathrm{d}L}{\mathrm{d}\beta}=0$,得$-\frac{1}{\sigma^{2}} \sum_{i=1}^{n} (Y_i - x_i \beta) x_i = 0 \implies \hat{\beta}_{ML}=\frac{\sum_{i=1}^{n} Y_i x_i}{\sum_{i=1}^{x} x_i^{2}}=\frac{\overline{Y x}}{ \overline{x ^{2}}}$。 $$ \begin{aligned} E\left( \hat{\beta}_{ML} \right) &=E\left( \frac{1}{\sum_{i=1}^{n} x_i^{2}} \sum_{i=1}^{n} x_i Y_i \right) =\frac{1}{\sum_{i=1}^{n} x_i^{2}} \sum_{i=1}^{n} E(x_i Y_i) = \frac{1}{\sum_{i=1}^{n} x_i^{2}} \sum_{i=1}^{n} x_i (EY_{i}) \\ &=\frac{1}{\sum_{i=1}^{n} x_i^{2}} \sum_{i=1}^{n} x_i(x_i \beta) = \beta \\ \end{aligned} $$ } \questionandanswerSolution[]{ 求$\beta$的MLE的分布。 }{ $$ \hat{\beta}_{ML} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^{2}} $$ } \end{enumerate} \questionandanswer[6]{ (15') 设$X_1, X_2, \cdots , X_n$是来自$N(\mu,1)$的简单随机样本,其中$\mu$未知。用$\bar{X}$表示样本均值。令$p=P(X_1\geqslant 0)$,回答以下问题: }{} \begin{enumerate} \questionandanswerSolution[]{ 求$p$的极大似然估计$\hat{p}$; }{ 因为$\mu$的MLE为$\bar{x}$,而$p = P(X_1\geqslant 0)=P\left( \frac{x_1-\mu}{1} \geqslant -\mu \right) =1-\Phi(-\mu)=\Phi(\mu)$, 所以由MLE的不变性知 $\hat{P}_{MLE} = \Phi(\bar{x})$ } \questionandanswerSolution[]{ 求$\sqrt{n}(\hat{p}-p)$的极限分布; }{ 因为$\hat{\mu} = \bar{x} \sim N(\mu, \frac{1}{n})$,设$g(x)= \Phi(x)$,由Delta方法知 $$ \sqrt{n} \left( \hat{p} - p \right) =\sqrt{n} \left( \Phi(\bar{x}) -\Phi(\mu) \right) = \xrightarrow{L} N(0, \phi^{2}(\mu) \frac{1}{n}) $$ 其中$\phi$为标准正态分布的概率密度函数。 } \questionandanswerSolution[]{ 求$p$的UMVUE。 }{ $\Phi\left( \sqrt{\frac{n}{n-1}} \cdot \bar{x} \right) $为$p$的UMVME。 } \end{enumerate} \questionandanswerSolution[]{ (10') 已知总体密度为$p(x;\theta) = \theta^{2} x^{\theta^{2}-1} (\theta>0, 00$)的一个样本。参数$\lambda$的先验分布是$\phi(\lambda)=e^{-\lambda}$(其中$\lambda>0$),求$\lambda$的后验密度和贝叶斯估计。 }{ 后验分布为 $$ \begin{aligned} h(\theta |X_1, \cdots ,X_n) &= c \prod_{i=1}^{n} f(x_i |\lambda) \cdot \pi(\lambda) \\ &=\frac{\lambda^{X_1+X_2+ \cdots +X_n}}{x_1! x_2!\cdots X_n!} e^{-n\lambda} e^{-\lambda} \\ &=c \lambda^{\sum_{i=1}^{n} x_i} e^{-(n+1) \lambda} \sim \operatorname{Ga}\left( \sum_{i=1}^{n} x_i +1, n+1 \right) \\ \end{aligned} $$ 后验均值为贝叶斯估计 $\displaystyle \hat{\lambda} = \frac{\sum_{i=1}^{n} x_i + 1}{n+1}$。 } \end{enumerate} \subsection*{附加题} \begin{enumerate} \questionandanswer[]{ (10') 设$X_1, \cdots X_n, X_{n+1}$是来自$N(\mu,\sigma^{2})$的样本,记$\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i, \ S_n^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i-\bar{X}_n)^{2}$。求解: }{} \begin{enumerate} \questionandanswerSolution[]{ 常数$a$和$b$使得$T=(a X_{n+1} + b \bar{X}_n)/S_n$服从$t$分布,并指出$t$分布的自由度; }{ 若$T=(a X_{n+1} + b \bar{X}_n)/S_n$服从$t$分布,则因为$X_{n+1}, \bar{X}_n$都与$S_n$独立,所以 $$ \begin{aligned} ET=0 &\implies a E(X_{n+1}) + b(\bar{X}_{n}) = 0 \\ &\implies a \mu + b \mu =0 \implies a = -b \\ \end{aligned} $$ 又因为$\displaystyle \frac{(\bar{X}_n - X_{n+1})}{\sqrt{\frac{n+1}{n} }\sigma}=\frac{\bar{X}_n - \mu-(X_{n+1}-\mu)}{\sqrt{\frac{n+1}{n}} \sigma}\sim N(0,1)$,$\displaystyle \frac{(n-1) S_n^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$,所以 $$ T=\left.\frac{(\bar{X}_n-X_{n+1})}{\sqrt{\frac{n+1}{n}}\sigma} \middle/ \sqrt{\frac{(n-1)S_n^{2}}{\sigma^{2}(n-1)}}\right. \sim t(n-1) $$ 整理得 $ \displaystyle \sqrt{\frac{n}{n+1}} (\bar{X}_n-X_{n+1}) /S_n \sim t(n-1) $\\ 即$a=\pm \sqrt{\frac{n}{n+1}}$, $b=\mp \sqrt{\frac{n}{n+1}}$,自由度为$n-1$。 } \questionandanswerSolution[]{ 计算$\mathbb{E}(S_n^{3})$。 }{ $$ \begin{aligned} &\because X = \frac{(n-1)S_n^{2}}{\sigma^{2}} \sim \chi^{2}(n-1) \\ &\therefore X\text{的密度函数为} p(x)= \frac{\left( \frac{1}{2} \right) ^{\frac{n-1}{2}}}{\Gamma\left( \frac{n-1}{2} \right) }x^{\frac{n}{2}-1} e^{-\frac{x}{2}}\ (x>0) \\ \end{aligned} $$ 取$y=\sqrt{x}$,则$Y=\sqrt{X}$的密度函数为 $$ g(y)= p(x) \frac{\mathrm{d}x}{\mathrm{d}y} =p(x) \cdot 2y = p(y^{2})\cdot 2y = \frac{\left( \frac{1}{2} \right) ^{\frac{n-1}{2}}}{\Gamma\left( \frac{n-1}{2} \right) } \cdot 2y^{n-2} \cdot y \cdot e^{-\frac{y^{2}}{2}} $$ $$ \begin{aligned} E(Y^{3}) &= \int_{0}^{+\infty} y^{3}g(y) \mathrm{d}y = \int_{0}^{+\infty} \frac{2\left( \frac{1}{2} \right) ^{\frac{n-1}{2}}}{\Gamma\left( \frac{n-1}{2} \right) } y^{n+1} \cdot e^{-\frac{y^{2}}{2}} \mathrm{d}y \\ &=\frac{2^{\frac{n+1}{2}}}{\Gamma\left( \frac{n-1}{2} \right) } \int_{0}^{+\infty} y^{n+1} e^{-\frac{y^{2}}{2}} \mathrm{d}y = \begin{cases} \frac{2^{\frac{n+1}{2}}}{\Gamma\left( \frac{n-1}{2} \right) } (2k-1)!!,\quad & n=2k-1 \\ \frac{2^{\frac{n+1}{2}}}{\Gamma\left( \frac{n-1}{2} \right) } (2k)!!,\quad & n=2k \\ \end{cases} \end{aligned} $$ 由$\displaystyle \sqrt{\frac{(n-1)S_n^{2}}{\sigma^{2}}}=Y \implies E S_n^{3}=\left( \frac{\sigma}{\sqrt{n-1}} \right) ^{3} \cdot E(Y^{3})$代入即得。 } \end{enumerate} \end{enumerate} \textbf{注:}正常题总分为100分,附加题总分为10分。总评分为两者之和,但总评分不超过100分。 \end{document}