\documentclass[全部作业]{subfiles} \setlength{\textheight}{300em} % \PassOptionsToPackage{papersize={170mm, 1000em}}{geometry} % \usepackage[textheight=1em]{geometry} \setlength{\paperheight}{300em} \begin{document} \chapter{单元作业5} \begin{enumerate} \questionandanswer[]{设随机变量$X$与$Y$满足$EX=EY=0$, $\operatorname{Var}X=\operatorname{Var}Y=1$, $\operatorname{Cov}(X,Y)=\rho $,证明$E\max(X^{2},Y^{2})\leqslant 1+\sqrt{1-\rho ^{2}}$}{ \begin{proof} 因为$\operatorname{Cov}(X,Y)=EXY-EXEY=\rho $,而$EX=EY=0$,所以$EXY=\rho $。\\ 而$\operatorname{Var}X=EX^{2}-(EX)^{2}=EX^{2}=1$,$\operatorname{Var}Y=EY^{2}-(EY)^{2}=EY^{2}=1$。 根据$\max(a,b)=\frac{\left\vert a+b \right\vert +\left\vert a-b \right\vert }{2}$和期望的线性性质, \begin{equation}\label{eq:1}\tag{1} E \max(X^{2},Y^{2})=E \frac{\left\vert X^{2}+Y^{2} \right\vert +\left\vert X^{2}-Y^{2} \right\vert }{2}=\frac{1}{2}E\left\vert X^{2}+Y^{2} \right\vert +\frac{1}{2}E\left\vert X^{2}-Y^{2} \right\vert \end{equation} 其中,$E\left\vert X^{2}+Y^{2} \right\vert =E(X^{2}+Y^{2})=EX^{2}+EY^{2}=2$, $E\left\vert X^{2}-Y^{2} \right\vert =E\left\vert X+Y \right\vert \left\vert X-Y \right\vert $。 根据Cauchy-Schwarz不等式,$\left(E\left\vert X+Y \right\vert \left\vert X-Y \right\vert\right) ^{2}\leqslant E\left\vert X+Y \right\vert ^{2}E\left\vert X-Y \right\vert ^{2}$。 其中$E\left\vert X+Y \right\vert ^{2}=E(X^{2}+2XY+Y^{2})=EX^{2}+2EXY+EY^{2}=2+2\rho $,\\ $E\left\vert X-Y \right\vert ^{2}=E(X^{2}-2XY+Y^{2})=EX^{2}-2XY+EY^{2}=2-2\rho $。 因此$\left( E\left\vert X+Y \right\vert \left\vert X-Y \right\vert \right) ^{2}\leqslant (2+2\rho )(2-2\rho )=4(1-\rho ^{2})$,两边同取根号可得 $$E\left\vert X^{2}-Y^{2} \right\vert =E\left\vert X+Y \right\vert \left\vert X-Y \right\vert \leqslant 2\sqrt{1-\rho ^{2}}$$ 再代入回 \eqref{eq:1} ,即可得到 $$ E\max(X^{2},Y^{2})\leqslant \frac{1}{2}\times 2+\frac{1}{2}\times 2\sqrt{1-\rho ^{2}}=1+\sqrt{1-\rho ^{2}} $$ \end{proof} } \questionandanswer[]{设随机变量$(X,Y)$服从均匀分布$U(D)$,其中$D=\{ (x,y)\ |\ x^{2}+y^{2}\leqslant 1 \}$,求$X$与$Y$的协方差。}{ \begin{proof}[解] 设$p(x,y)$表示随机变量$(X,Y)$的联合概率密度函数,则可以得到 $$ p(x,y)=\begin{cases} \frac{1}{\pi },\quad & (x,y)\in D \\ 0,\quad & (x,y)\not \in D \\ \end{cases} $$ $$ EX=\iint xp(x,y)\mathrm{d}x\mathrm{d}y=\iint_{D}x \cdot \frac{1}{\pi }\mathrm{d}x\mathrm{d}y\xlongequal{\textit{对称性}} 0 $$ $$ EY=\iint yp(x,y)\mathrm{d}x\mathrm{d}y=\iint_{D}y \cdot \frac{1}{\pi }\mathrm{d}x\mathrm{d}y\xlongequal{\textit{对称性}} 0 $$ $$ EXY=\iint xyp(x,y)\mathrm{d}x\mathrm{d}y=\iint_{D}xy \cdot \frac{1}{\pi }\mathrm{d}x\mathrm{d}y\xlongequal{\textit{对称性}} 0 $$ 所以$X$与$Y$的协方差为 $$ \operatorname{Cov}(X,Y)=EXY-EXEY=0 $$ \end{proof} } \questionandanswer[]{设随机变量$(X,Y)$服从均匀分布$U(D)$,其中$D=\{ (x,y)\ |\ 00$,求在$Y=y$时$X$的条件概率密度函数$p_{X|Y}(x|y)$,条件数学期望$E(X|Y=y)$。进一步地,利用重期望公式求$EX$。}{ \begin{proof}[解] 先计算边际概率密度函数 $$ p_{Y}(y)=\int_{-\infty}^{+\infty} p(x,y) \mathrm{d}x=\begin{cases} \int_{0}^{y} e^{-y} \mathrm{d}x,\quad & y>0 \\ 0,\quad & y\leqslant 0 \\ \end{cases}=\begin{cases} ye^{-y},\quad & y>0 \\ 0,\quad & y\leqslant 0 \\ \end{cases} $$ 之后计算条件概率密度函数 $$ p_{X|Y}(x|y)=\frac{p(x,y)}{p_{Y}(y)}=\begin{cases} \frac{1}{y},\quad & 00,x\leqslant 0 \\ \end{cases} $$ 根据数学期望的定义, $$ E(X|Y=y)=\int_{-\infty}^{+\infty} x p_{X|Y}(x|y) \mathrm{d}x = \int_{0}^{y} x\cdot \frac{1}{y} \mathrm{d}x = \frac{y}{2} $$ 再利用重期望公式, $$ EX=\int_{-\infty}^{+\infty} E(X|Y=y)p_{Y}(y) \mathrm{d}y=\int_{0}^{+\infty} \frac{y}{2}\cdot ye^{-y} \mathrm{d}y = 1 $$ \end{proof} } \questionandanswer[]{设$X$服从指数分布$\operatorname{Exp}(\lambda )$,求$Y=[X]$的分布。(这里符号$[a]$表示不超过$a$的最大整数。}{ \begin{proof}[解] 由于$Y=[X]$是离散型分布,所以求出$Y$的分布列即可 $$ p_i=\int_{i}^{i+1} \lambda e^{-\lambda x} \mathrm{d}x = (e^{\lambda} - 1) e^{- \lambda (i + 1)} $$ \end{proof} } \questionandanswer[]{设随机变量$X$服从标准正态分布$N(0,1)$, $a>0$,记$Y=\begin{cases} X,\quad & \left\vert X \right\vert 0) + P(X>0,Y\leqslant 0) \\ &\xlongequal{X\textit{与}Y\textit{}独立}P(X\leqslant 0)P(Y>0)+P(X>0)P(Y\leqslant 0) \\ &\xlongequal{X\sim N(0,1),Y\sim N(0,1)}\frac{1}{2}\times \frac{1}{2}+\frac{1}{2}\times \frac{1}{2} \\ &=\frac{1}{2} \\ \end{aligned} $$ \end{proof} } \end{enumerate} \end{document}