\documentclass[全部作业]{subfiles} \fancyhead{} \fancyhead[C]{\mysignature} \begin{document} \renewcommand{\bar}{\xoverline} % 这一行在编译时可以取消注释,注意一定要放在\begin{document}下面才有用 \chapter{逻辑代数基础} % 思考题和习题 1、2、4、5、6、8、9 \begin{enumerate} \item 运用基本定理证明下列等式。 \begin{enumerate} \item $AB+\bar{A}C+\bar{B}C = AB+C $ \begin{proof} $$ \begin{aligned} &\\ &\begin{aligned} AB+\bar{A}C+\bar{B}C & = AB+(\bar{A}+\bar{B})C \\ & = AB+\overline{AB}C \\ & = AB+C \\ \end{aligned} \end{aligned} $$ \end{proof} \item $BC+D+\bar{D}(\bar{B}+\bar{C})(DA+B)=B+D$ \begin{proof} $$ \begin{aligned} BC+D+\bar{D}(\bar{B}+\bar{C})(DA+B) & = BC+D+(\bar{B}+\bar{C})(DA+B) \\ & = BC+D+\overline{BC}(DA+B) \\ & = BC+D+DA+B \\ & = B+D \\ \end{aligned} $$ \end{proof} \item $ABC+\bar{A}\bar{B}\bar{C}=\overline{A\bar{B}+B\bar{C}+C\bar{A}}$ \begin{proof} $$ \begin{aligned} ABC+\bar{A}\bar{B}\bar{C} & = (A+\bar{A})(A+\bar{B})(A+\bar{C})(B+\bar{A})(B+\bar{B})(B+\bar{C})(C+\bar{A})(C+\bar{B})(C+\bar{C}) \\ & = (A+\bar{B})(A+\bar{C})(B+\bar{A})(B+\bar{C})(C+\bar{A})(C+\bar{B}) \\ & = \overline{A\bar{B}+A\bar{C}+B\bar{A}+B\bar{C}+C\bar{A}+C\bar{B}} \\ & \xlongequal{\textit{冗余律}} \overline{A\bar{B}+B\bar{C}+C\bar{A}} \\ \end{aligned} $$ \end{proof} \item $AB+BC+CA=(A+B)(B+C)(C+A)$ \begin{proof} $$ \begin{aligned} (A+B)(B+C)(C+A) & = ABC+ABA+ACC+ACA+BBC+BBA+BCC+BCA \\ & = ABC+AB+AC+AC+BC+BA+BC+ABC \\ & = ABC+AB+AC+BC \\ & = AB+BC+CA \\ \end{aligned} $$ \end{proof} \item $\bar{A}BC+AB+A\bar{C}=BC+A\bar{C}$ \begin{proof} $$ \begin{aligned} \bar{A}BC+AB+A\bar{C} & = B(\bar{A}C+A)+A\bar{C} \\ & = B(C+A)+A\bar{C} \\ & = BC+AB+A\bar{C} \\ & = BC+A\bar{C} \\ \end{aligned} $$ \end{proof} \item $\overline{A\bar{B}+\bar{A}B}=(A+\bar{B})(\bar{A}+B)$ \begin{proof} $$ \begin{aligned} \overline{A\bar{B}+\bar{A}B} & = \overline{A\bar{B}}\ \overline{\bar{A}B} \\ & = (\bar{A}+B)(A+\bar{B}) \\ & = (A+\bar{B})(\bar{A}+B) \\ \end{aligned} $$ \end{proof} \item $\bar{A}\bar{B}+AB+BC=\bar{A}\bar{B}+AB+\bar{A}C$ \begin{proof} $$ \begin{aligned} \bar{A}\bar{B}+AB+BC & = \bar{A}\bar{B}+AB+BC(A+\bar{A}) \\ & = \bar{A}\bar{B}+AB+BCA+BC\bar{A} \\ & = \bar{A}\bar{B}+AB+\bar{A}BC \\ & = \bar{A}(\bar{B}+BC)+AB \\ & = \bar{A}(\bar{B}+C)+AB \\ & = \bar{A}\bar{B}+AB+\bar{A}C \\ \end{aligned} $$ \end{proof} \end{enumerate} \item 用逻辑代数定理化简下列逻辑函数式。 \begin{enumerate} \item $AB+\bar{A}B\bar{C}+BC$ $$ \begin{aligned} AB+\bar{A}B\bar{C}+BC & = B(A+\bar{A}\bar{C}+C) \\ & = B(A+\bar{C}+C) \\ & = B \\ \end{aligned} $$ \item $\bar{A}\bar{B}\bar{C}+A\bar{B}\bar{C}+A\bar{B}C$ $$ \begin{aligned} \bar{A}\bar{B}\bar{C}+A\bar{B}\bar{C}+A\bar{B}C & = \bar{B}(\bar{A}\bar{C}+A\bar{C}+AC) \\ & = \bar{B}(\bar{C}+AC) \\ & = \bar{B}(\bar{C}+A) \\ \end{aligned} $$ \item $ab(cd+\bar{c}d)$ $$ ab(cd+\bar{c}d)=abd $$ \item $[x \overline{(xy)}][y \overline{(xy)}]$ $$ \begin{aligned} \relax[x \overline{(xy)}][y \overline{(xy)}] & = xy\overline{(xy)}\ \overline{(xy)} \\ & = xy\overline{(xy)} \\ & = 0 \\ \end{aligned} $$ \item $\overline{(a+b)}\ \overline{(\bar{a}+\bar{b})}$ $$ \begin{aligned} \overline{(a+b)}\ \overline{(\bar{a}+\bar{b})} & = \bar{a}\bar{b}ab \\ & = 0 \\ \end{aligned} $$ \item $\bar{a} \bar{b} \bar{c}+\bar{a} \bar{b}c+a \bar{b}\bar{c}+abc$ $$ \begin{aligned} \bar{a} \bar{b}\bar{c}+\bar{a} \bar{b}c+a \bar{b}\bar{c}+abc & = \bar{a} \bar{b}+a\bar{b}\bar{c}+abc \\ & = \bar{b}(\bar{a}+a\bar{c})+abc \\ & = \bar{b}(\bar{a}+\bar{c})+abc \\ & = \bar{b}\overline{ac}+bac \\ \end{aligned} $$ \end{enumerate} \item[4.] 用卡诺图化简下列最小项表达式.\\ $G=f(a,b,c)=\sum m(1,3,5,6,7)$\\ \includesvg{1.4.G}\\ $$ G=f(a,b,c)=a \bar{b}+c $$ $H=f(w,x,y,z)=\sum m(0,2,8,10)$\\ \includesvg{1.4.H}\\ $$ H=f(w,x,y,z)=\bar{x}\bar{z} $$ \newpage $I=f(w,x,y,z)=\sum m(1,3,4,6,9,12,14,15)$\\ \includesvg{1.4.I}\\ $$ I=f(w,x,y,z)=x\oplus z\oplus (wyz) $$ \vspace{10em} $J=f(a,b,c)=\sum m(0,1,2,3,4,5,7)$\\ \includesvg{1.4.J}\\ $$ J=f(a,b,c)=\sum M(6)=\bar{a}+b+c $$ \newpage $K=f(a,b,c,d)=\sum m(3,4,5,7,9,13,14,15)$\\ \includesvg{1.4.K}\\ $$ K=f(a,b,c,d)=bd+\bar{a}b \bar{c}+\bar{a}cd+abc $$ \vspace{10em} $L=f(a,b,c,d)=\sum m(0,1,2,5,6,7,8,9,13,14)$\\ \includesvg{1.4.L}\\ $$ L=f(a,b,c,d)=\bar{b}\bar{c}+\bar{c}d+\bar{a}bc+\bar{a}c \bar{d}+bc \bar{d} $$ \newpage \item[5.] 用卡诺图化简下列最大项表达式。\\ $H=f(a,b,c,d)=\prod M(2, 3, 4, 6, 7, 10, 11, 12) $\\ \includesvg{1.5.H}\\ $$ H=f(a,b,c,d)=(a+\bar{c})(\bar{b}+c+d)(\bar{a}+b+\bar{c}) $$ \vspace{10em} $F=f(u,v,w,x,y)=\prod M(0, 2, 8, 10, 16, 18, 24, 26)$\\ \includesvg{1.5.F}\\ $$ F=f(u,v,w,x,y)=w+y $$ \newpage \item[6.] 化简下列带任意项的逻辑函数。\\ $V=f(a,b,c,d)=\sum m(2,3,4,5,13, 15)+\sum d(8,9,10, 11)$\\ \includesvg{1.6.V}\\ $$ V=f(a,b,c,d)=b \bar{c}+\bar{b}c $$ \vspace{10em} $Y=f(u,v,w,x)=\sum m(1, 5, 7, 9, 13, 15)+\sum d(8, 10, 11, 14)$\\ \includesvg{1.6.Y}\\ $$ Y=f(u,v,w,x)=x \overline{\bar{u}\bar{v}w}=x(u+v+\bar{w}) $$ \newpage $P=f(r,s,t,u)=\sum m(0, 2, 4, 8, 10, 14)+\sum d(5,6,7,12)$\\ \includesvg{1.6.P}\\ $$ P=f(r,s,t,u)=\bar{u} $$ \vspace{10em} $H=f(a,b,c,d,e)=\sum m(5,7,9,12,13,14,17,19,20,22,25,27,28,30)+\sum d(8,10,24,26)$\\ \includesvg{1.6.H}\\ $$ H=f(a,b,c,d,e) = a \bar{c}e + ac \bar{e}+\bar{a}\bar{b}ce+bcd \bar{e}+b \bar{c}\bar{d}+\bar{a}bc \bar{d} $$ \newpage $I=f(d,e,f,g,h)=\prod M(5,7,8,21,23,26,30)\cdot \prod D(10,14,24,28)$\\ \includesvg{1.6.I}\\ $$ I=f(d,e,f,g,h)=(e+\bar{f}+\bar{h})(\bar{e}+\bar{g}+h)(d+\bar{e}+f+h) $$ \vspace{10em} \item[8.] 将下列逻辑函数化简成与非形式最简式。\\ $U=f(a,b,c,d)=\sum m(3,4,6,11,12,14)$\\ \includesvg{1.8.U}\\ $$ U=f(a,b,c,d)=b \bar{d}+\bar{b}cd = \overline{\overline{b \bar{d}}\ \overline{\bar{b}cd}} $$ \newpage $V=f(a,b,c,d)=\sum m (0,1,2,5,8,10,13)$\\ \includesvg{1.8.V}\\ $$ \begin{aligned} &V=f(a,b,c,d)=(\overline{a \oplus b \oplus d}+\bar{a}\bar{b})\overline{cd}=\overline{a\oplus b\oplus d \overline{\bar{a}\bar{b}}}\overline{cd}=\overline{(\bar{a}b+a \bar{b}) \oplus d}\ \overline{cd} \\ &=\overline{\overline{(\bar{a}b +a \bar{b})}d}\ \overline{(\bar{a}b+a \bar{b})\bar{d}}\ \overline{cd}=\overline{\overline{\bar{a}b} \overline{a \bar{b}} d} \ \overline{\overline{\overline{\bar{a}b} \overline{a \bar{b}}}\bar{d}}\ \overline{cd}\\ \end{aligned} $$ \vspace{10em} $W=f(a,b,c,d) = \sum m(3,5,7,10,11)$\\ \includesvg{1.8.W}\\ $$ W=f(a,b,c,d)=\bar{a}cd+\bar{a}bd+a \bar{b}\bar{c}d+a \bar{b}c \bar{d} = \overline{\overline{\bar{a}cd}\ \overline{\bar{a}bd}\ \overline{a \bar{b}\bar{c}d}\ \overline{a \bar{b}c \bar{d}}} $$ \newpage \item[9.] 将下列逻辑函数化简成或非形式最简式。\\ $G=f(a,b,c,d)=\prod M(0,1,2,5,8,10,13) $\\ \includesvg{1.9.G}\\ $$ G=f(a,b,c,d)=(b+d)(c+\bar{d}+a \bar{b}\bar{c})=\overline{\overline{b+d}\ \overline{c+\bar{d}+\overline{\bar{a}+b+c}}} $$ \vspace{10em} $H=f(a,b,c,d)=\prod M(3,5,7,9,11)$\\ \includesvg{1.9.H}\\ $$ H=f(a,b,c,d) = \bar{d}+\bar{a} \bar{b}\bar{c}+ab=\bar{d}+\overline{a+b+c}+\overline{\bar{a}+\bar{b}} $$ \end{enumerate} \end{document}