\documentclass[全部作业]{subfiles} \usepackage{mylatex} \pagestyle{fancy} \fancyhead{} \fancyhead[C]{\mysignature} \setcounter{chapter}{1} \setcounter{section}{2} \begin{document} \section{集合运算的性质} \begin{enumerate} \item[9.] \ExplSyntaxOn \begin{zhongwen} $设A、B、C是集合,证明下列结论:$ \end{zhongwen} \ExplSyntaxOff \begin{enumerate} \item[(3)] \ExplSyntaxOn \begin{zhongwen} $若A\cap B=\varnothing,则A-B=A$ \end{zhongwen} \ExplSyntaxOff \begin{proof} \ExplSyntaxOn \begin{zhongwen} $$ \begin{aligned} &\because A\cap B=\varnothing\\ &\therefore \forall x \in A \implies x\notin B\\ &\therefore \forall x \in A\implies x\in \bar{B}\\ &\therefore A \subseteq \bar{B}\\ &\therefore A\cap \bar{B}=A\\ &\therefore A-B=A\\ \end{aligned} $$ \end{zhongwen} \ExplSyntaxOff \end{proof} \end{enumerate} \item[11.] \ExplSyntaxOn \begin{zhongwen} $指出下列集合等式成立的充分必要条件,其中A、B和C是集合:$ \end{zhongwen} \ExplSyntaxOff \begin{enumerate} \item[(5)] $(A-B)\cap (A-C)=\varnothing$ $$ \begin{aligned} &(A-B)\cap (A-C)=A\cap \bar{B}\cap A \cap \bar{C}=A\cap \bar{B}\cap \bar{C}=A-B-C=\varnothing\\ &\iff A-B-C=\varnothing\\ \end{aligned} $$ \end{enumerate} \item[13.] \ExplSyntaxOn \begin{zhongwen} $设A和B是集合,集合运算对称差\oplus 定义如下:A\oplus B=(A-B)\cup (B-A).\\证明下列恒等式,其中A、B和C是任意集合:$ \end{zhongwen} \ExplSyntaxOff \begin{enumerate} \item[(5)] $A\oplus B=(A\cup B)-(A\cap B)$ \begin{proof} \ExplSyntaxOn \begin{zhongwen} $$ \begin{aligned} (A\cup B)-(A\cap B) & = (A\cup B)\cap \overline{A\cap B} \\ & = (A\cup B)\cap (\bar{A}\cup \bar{B}) \\ & = ((A\cup B)\cap \bar{A})\cup ((A\cup B)\cap \bar{B}) \\ & = (B\cap \bar{A})\cup (A\cap \bar{B}) \\ & = (A-B)\cup (B-A) \\ & = A\oplus B \\ \end{aligned} $$ \end{zhongwen} \ExplSyntaxOff \end{proof} \end{enumerate} \item[21.] \textit{设A、B、C和D是任意集合.请证明:} \begin{enumerate} \item $(A\times C)\cap (B\times D)=(A\cap B)\times (C\cap D)$ \begin{proof} \ExplSyntaxOn \begin{zhongwen} $$ \begin{aligned} \forall (x,y), \quad&(x,y)\in (A\times C)\cap (B\times D)\\ \iff &(x,y)\in (A\times C)且(x,y)\in (B\times D)\\ \iff &x\in A,y\in C且x\in B,y\in D\\ \iff &x\in A\cap B且y\in C\cap D\\ \iff &(x,y)\in (A\cap B)\times (C\cap D)\\ \therefore \quad&(A\times C)\cap (B\times D)=(A\cap B)\times (C\cap D)\\ \end{aligned} $$ \end{zhongwen} \ExplSyntaxOff \end{proof} \end{enumerate} \item[22.] \textit{设$\{ A_\beta|\beta\in B \}$是以B为下标集的集合族.证明下列恒等式.} \begin{enumerate} \item $\overline{\displaystyle \bigcup_{\beta\in B} A_\beta}=\displaystyle \bigcap_{\beta\in B} \overline{A_\beta}$ \begin{proof} % \ExplSyntaxOn \begin{zhongwen} $$ \begin{aligned} \forall x, \quad&x\in \overline{\bigcup_{\beta\in B}A_\beta}\\ \iff& x\notin \bigcup_{\beta\in B} A_\beta\\ \iff&\lnot (\exists \beta\in B, x\in A_\beta)\\ \iff&\forall \beta\in B, x\notin A_\beta\\ \iff&\forall \beta\in B, x\in \overline{A_\beta}\\ \iff&x\in \bigcap_{\beta\in B} \overline{A_\beta}\\ \therefore \quad&\overline{\bigcup_{\beta\in B} A_\beta}=\bigcap_{\beta\in B} \overline{A_\beta}\\ \end{aligned} $$ \end{zhongwen} % \ExplSyntaxOff \end{proof} \end{enumerate} \item[24.] \textit{设集合族$\{A_n|n\in \mathbb{N}\}$,令$B_0=A_0$,$B_n=A_n-\displaystyle \bigcup_{k=0}^{n-1} A_k(n>0) $.证明:} \begin{enumerate} \item[(2)] $\displaystyle\bigcup_{ n\in \mathbb{N}} A_n =\displaystyle \bigcup_{n\in \mathbb{N}} B_n$ \begin{proof} \begin{zhongwen} $$ \begin{aligned} &\because B_n=A_n-\displaystyle \bigcup_{k=0}^{n-1}A_k(n>0)\\ &\therefore \forall n>0, B_n\in A_n\\ &\forall x\in \bigcup_{n\in \mathbb{N}} B_n \iff\exists n_0\in \mathbb{N},x\in B_{n_0}\implies x\in A_{n_0}\\ &\therefore \displaystyle \bigcup_{n\in \mathbb{N}}A_n\supseteq \bigcup_{n\in \mathbb{N}} B_n \\ &\forall x\in \displaystyle \bigcup_{n\in \mathbb{N}} A_n, 则 \exists n\in \mathbb{N},x\in A_{n} \\ &设C_x=\{ n|x\in A_n \} \\ &设n_1=\min{C_x} \\ &则x\in A_{n_1}且\forall n_2 a =[] [] > for (let i = 1; i<=200; i++){ ... a.push(i); ... } > a.reduce((out, cur) => { ... if ((cur%3==0 || cur%5==0) && cur%15!=0) out.push(cur); ... return out; ... }, Array()).length 80 \end{minted} \item[(5)] \begin{zhongwen} $与15互素的正整数(即与15之间的最大公因子为1的那些正整数)共有多少个?$ \end{zhongwen} \begin{zhongwen} $$ \begin{aligned} &A与B的定义和上题相同 \\ &则\left\vert 在1\sim 200的正整数中与15互素的正整数 \right\vert \\ &=\left\vert 1\sim 200的正整数 \right\vert -\left\vert A\cup B \right\vert \\ &=200-(\left\vert A \right\vert +\left\vert B \right\vert -\left\vert A\cap B \right\vert )=200-(66+40-13) = 107 \\ \end{aligned} $$ \end{zhongwen} \end{enumerate} \end{enumerate} \end{document}