\documentclass[全部作业]{subfiles} \input{mysubpreamble} \begin{document} \setcounter{chapter}{5} \setcounter{section}{3} \section{三大抽样分布} \begin{enumerate} \questionandanswerSolution[2]{ 设$x_1,x_2, \cdots ,x_n$是来自$N(\mu,16)$的样本,问$n$多大时才能使得$P(\left\vert \bar{x}-\mu \right\vert<1 )\geqslant 0.95$成立? }{ 由于$\bar{x}\sim N(\mu,\frac{16}{n})$,根据切比雪夫不等式, $$ P(\left\vert \bar{x}-E \bar{x} \right\vert <\varepsilon)\geqslant 1-\frac{\operatorname{Var}\bar{x}}{\varepsilon} $$ $$ P(\left\vert \bar{x}-\mu \right\vert <1)\geqslant 1-\frac{16}{n} $$ $$ \frac{16}{n}=0.95 \Rightarrow n=\frac{16}{0.95} = \frac{320}{19} \approx 16.8421052631579 $$ 因为$n$为整数,所以$n$至少为17时才能使得$P(\left\vert \bar{x}-\mu \right\vert<1 )\geqslant 0.95$成立。 } \questionandanswerSolution[4]{ 由正态总体$N(\mu,\sigma^{2})$抽取容量为20的样本,试求$P\left( 10\sigma^{2}\leqslant \displaystyle \sum_{i=1}^{20} (x_i-\mu)^{2}\leqslant 30\sigma^{2} \right) $。 }{ 由于$\displaystyle s^{2}=\frac{1}{19}\sum_{i=1}^{20} (x_i-\mu)^{2}$, $\displaystyle \frac{19s^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$, 所以$\displaystyle \frac{1}{\sigma^{2}}\sum_{i=1}^{20} (x_i-\mu)^{2}\sim \chi^{2}(n-1)$。 所以 $$ \begin{aligned} &P\left( 10\sigma^{2}\leqslant \sum_{i=1}^{20} (x_i-\mu)^{2}\leqslant 30\sigma^{2} \right) = P\left( 10\leqslant \frac{1}{\sigma^{2}}\sum_{i=1}^{20} (x_i-\mu)^{2}\leqslant 30 \right) \\ &=\int_{10}^{30} \frac{\left( \frac{1}{2} \right) ^{\frac{20}{2}}}{\Gamma\left( \frac{20}{2}-1 \right) } y^{\frac{20}{2}}e^{-\frac{y}{2}} \mathrm{d}y = \int_{10}^{30} \frac{\left( \frac{1}{2} \right) ^{10}}{9!} y^{9}e^{-\frac{y}{2}} \mathrm{d}y \approx 0.898318281994385 \\ \end{aligned} $$ \begin{center} \includegraphics[width=0.2\linewidth]{imgs/2024-03-20-14-05-40.png} \end{center} } \questionandanswerSolution[6]{ 设$x_1,x_2, \cdots ,x_n$是来自$N(\mu,1)$的样本,试确定最小的常数$c$,使得对任意的$\mu\geqslant 0$,有$P(\left\vert \bar{x} \right\vert