\documentclass[全部作业]{subfiles} \begin{document} \chapter{单元作业3} \begin{enumerate} \item 试用随机变量$X$的分布函数$F_{X}(x)$表示随机变量$-\min(X,0)$的分布函数。 \begin{proof}[解] \begin{zhongwen} $$ \begin{aligned} % F_{-\min(X,0)}(x)=-\min(F_{X}(x),0) F_{-\min(X,0)}(x) & = P(-\min(X,0)\leqslant x) \\ & = P(\min(X,0)\geqslant -x) \\ & = P(X\geqslant -x, 0\geqslant -x) \\ & = P(X\geqslant -x, x\geqslant 0) \\ &=\begin{cases} P(X\geqslant -x), & x\geqslant 0 \\ 0, & x<0 \end{cases} \\ &=\begin{cases} 1-P(X<-x), & x\geqslant 0 \\ 0, & x<0 \end{cases} \\ &=\begin{cases} 1-F_{X}(-x-0), & x\geqslant 0 \\ 0, & x<0 \end{cases} \\ \end{aligned} $$ \end{zhongwen} \end{proof} \item 设随机变量$X$等可能地取值0和1, 求$X$的分布函数。 \begin{proof}[解] \begin{zhongwen} $$ \begin{aligned} F_{X}(x)=\begin{cases} 0, & x<0 \\ \frac{1}{2}, & 0\leqslant x<1 \\ 1, & x\geqslant 1 \end{cases} \end{aligned} $$ \end{zhongwen} \end{proof} \item 设离散型随机变量X的分布列为$\displaystyle P(X=k)=\frac{c}{2^{k}}, \quad k=0, 1, 2, \ldots $,求常数$c$的值。 \begin{proof}[解] \begin{zhongwen} $$ \begin{aligned} &\because \sum_{k = 0}^{\infty}\frac{c}{2^{k}}=1 \\ &\therefore c \sum_{k=0}^{\infty}\frac{1}{2^{k}}=c \frac{1}{1-\frac{1}{2}}=2c=1 \\ &\therefore c=\frac{1}{2} \\ \end{aligned} $$ \end{zhongwen} \end{proof} \item 设随机变量$X$的概率密度函数为$p(x)=\begin{cases} ce^{-\sqrt{x}}, & x>0 \\ 0, & x\leqslant 0 \end{cases}$,求常数$c$。 \begin{proof}[解] \begin{zhongwen} $$ \begin{aligned} &\because \int_{-\infty}^{+\infty} p(x) \mathrm{d}x=1 \\ &\therefore \int_{0}^{+\infty} ce^{-\sqrt{x}} \mathrm{d}x=c \int_{0}^{+\infty} e^{-\sqrt{x}} \mathrm{d}x = 2c=1 \\ &\therefore c=\frac{1}{2} \\ \end{aligned} $$ \end{zhongwen} \end{proof} \item 设$X\sim N(10,4)$,求概率$P(61)=2P(X>2)$。 \begin{proof}[解] \begin{zhongwen} $$ \begin{aligned} 由P(X>1)&=2P(X>2)可知: \\ \int_{1}^{+\infty} \lambda e^{-\lambda x} \mathrm{d}x&=2\int_{2}^{+\infty} \lambda e^{-\lambda x} \mathrm{d}x \\ \left. - e^{- \lambda x} \right|_{1}^{+\infty}&=-2\left. e^{- \lambda x} \right|_{2}^{+\infty} \\ e^{-\lambda }&=2e^{-2\lambda } \\ 2(e^{-\lambda })^{2}-e^{-\lambda }&=0 \\ e^{-\lambda }(2e^{-\lambda }-1)&=0 \\ \end{aligned} \hspace{5em} \begin{aligned} &\because e^{-\lambda }\neq 0 \\ &\therefore 2e^{-\lambda }-1=0 \\ &\therefore e^{-\lambda }=\frac{1}{2} \\ &\therefore \lambda =-\ln (\frac{1}{2})=\ln 2 \\ % &\left. \frac{(- \lambda x - 1) e^{- \lambda x}}{\lambda} \right|_{1}^{+\infty} =2\left. \frac{(- \lambda x - 1) e^{- \lambda x}}{\lambda} \right|_{2}^{+\infty} \\ % &0-\frac{(-\lambda -1)e^{-\lambda }}{\lambda }=2 (0-\frac{(-2\lambda -1)e^{-2\lambda }}{\lambda }) \\ % &(\lambda +1)e^{-\lambda }=2(2\lambda +1)e^{-2\lambda } \\ % &\lambda e^{-\lambda }+e^{-\lambda }=4\lambda e^{-2\lambda }+2e^{-2\lambda } \\ % &使用fx-991 \mathrm{CN}\ \mathrm{X}解得\lambda =2857100 \\ % solve(latex2sympy(r"0-\frac{(-\lambda -1)e^{-\lambda }}{\lambda }=2 (0-\frac{(-2\lambda -1)e^{-2\lambda }}{\lambda })")) % solve(0 - (-y - 1)*exp(-y)/y - 2*(0 - (-1*2*y - 1)*exp(-1*2*y)/y)) \end{aligned} $$ \begin{center} % \includegraphics[width=0.5\linewidth]{imgs/2023-11-08-13-38-39.png} \end{center} \end{zhongwen} \end{proof} \item 设随机变量$X$服从几何分布$\operatorname{Ge}(p)$,求$X$的数学期望$EX$。 \begin{proof}[解] \begin{zhongwen} $$ \begin{aligned} &\because 01\\ 1, & 0\leqslant x\leqslant 1 \end{cases} $$ $$ \begin{aligned} \operatorname{Var}X^{3} & = E(X^{3})^{2}-(EX^{3})^{2} \\ &=\int_{-\infty}^{+\infty} x^{6}p(x) \mathrm{d}x-\left( \int_{-\infty}^{+\infty} x^{3}p(x) \mathrm{d}x \right) ^{2} \\ &=\int_{0}^{1} x^{6} \mathrm{d}x-\left( \int_{0}^{1} x^{3} \mathrm{d}x \right) ^{2} \\ & = \frac{9}{112} \\ & \approx 0.0803571428571429 \\ \end{aligned} $$ \end{zhongwen} \end{proof} \end{enumerate} \end{document}