\documentclass[a4paper]{ctexart} \input{mypreamble} \renewcommand{\mychapternum}{4} \renewcommand{\mylabname}{内核线程管理} \renewcommand{\mydate}{2024年5月17日} \begin{document} \mytitle \begin{enumerate} \item{\textbf{研读理解相关代码后,回答以下问题:}} \begin{enumerate} \questionandanswer[]{ 请简单说明\mintinline{C}{proc_struct}中各个成员变量含义以及作用。它与理论课中讲述的PCB结构有何不同之处? }{} {\kaishu \setlength{\parskip}{2em} \begin{minted}[]{C} struct proc_struct { enum proc_state state; // Process state int pid; // Process ID int runs; // the running times of Proces uintptr_t kstack; // Process kernel stack volatile bool need_resched; // bool value: need to be rescheduled to release CPU? struct proc_struct *parent; // the parent process struct mm_struct *mm; // Process's memory management field struct context context; // Switch here to run process struct trapframe *tf; // Trap frame for current interrupt uintptr_t cr3; // CR3 register: the base addr of Page Directroy Table(PDT) uint32_t flags; // Process flag char name[PROC_NAME_LEN + 1]; // Process name list_entry_t list_link; // Process link list list_entry_t hash_link; // Process hash list }; \end{minted} \mintinline{C}{state}是进程的状态,\mintinline{C}{pid}是进程的ID,\mintinline{C}{runs}是进程的被调度到的次数,\mintinline{C}{kstack}是进程的堆栈,\mintinline{C}{need_resched}用于非抢占式调度,表示进程是否运行结束可以把CPU重新调度给其他进程,\mintinline{C}{parent}是进程的父进程,\mintinline{C}{mm}是进程的内存管理的部分的指针,\mintinline{C}{context}是进程的上下文,即 \begin{minted}{C} struct context { uint32_t eip; uint32_t esp; uint32_t ebx; uint32_t ecx; uint32_t edx; uint32_t esi; uint32_t edi; uint32_t ebp; }; \end{minted} \mintinline{C}{tf}是进程的中断帧,记录了中断的相关信息,\mintinline{C}{cr3}是进程的页目录表的指针,\mintinline{C}{flags}是进程的各种标志位,\mintinline{C}{name}是进程的名称,\mintinline{C}{list_link}是所有进程的链表表项,\mintinline{C}{hash_link}是具有同一个哈希值的进程的链表表项。 它与理论课中讲述的PCB结构的不同之处在于没有优先级、进程组、进程运行时间、进程使用的CPU时间、进程的子进程的CPU时间、文件管理(因为还没实现文件系统?)。 } \questionandanswer[]{ 试简单分析 uCore中 内核线程的创建过程。(要求说明处理流程,相关的主要函数、它们的功能以及调用关系。) }{} {\kaishu \setlength{\parskip}{2em} \begin{center} \includegraphics[width=1\linewidth]{imgs/2024-05-17-19-18-00.png} \end{center} \begin{minted}{C} // proc_init - set up the first kernel thread idleproc "idle" by itself and // - create the second kernel thread init_main void proc_init(void) { int i; list_init(&proc_list); for (i = 0; i < HASH_LIST_SIZE; i ++) { list_init(hash_list + i); } if ((idleproc = alloc_proc()) == NULL) { panic("cannot alloc idleproc.\n"); } idleproc->pid = 0; idleproc->state = PROC_RUNNABLE; idleproc->kstack = (uintptr_t)bootstack; idleproc->need_resched = 1; set_proc_name(idleproc, "idle"); nr_process ++; current = idleproc; int pid = kernel_thread(init_main, "Hello world!!", 0); if (pid <= 0) { panic("create init_main failed.\n"); } initproc = find_proc(pid); set_proc_name(initproc, "init"); assert(idleproc != NULL && idleproc->pid == 0); assert(initproc != NULL && initproc->pid == 1); } \end{minted} 主要的内核线程创建过程在\mintinline{C}{proc_init}中,首先调用\mintinline{C}{list_init}初始化全部进程的链表和相同哈希的进程列表,然后调用 \mintinline{C}{alloc_proc}给当前进程分配一个进程控制块,并且设置相关属性,其中调用\mintinline{C}{set_proc_name}设置当前进程的名称为\mintinline{C}{"idle"},之后调用\mintinline{C}{kernel_thread}创建一个\mintinline{C}{init_main}进程,并调用\mintinline{C}{find_proc},再调用\mintinline{C}{set_proc_name}将其名称设置为\mintinline{C}{init}。 \begin{minted}{C} // kernel_thread - create a kernel thread using "fn" function // NOTE: the contents of temp trapframe tf will be copied to // proc->tf in do_fork-->copy_thread function int kernel_thread(int (*fn)(void *), void *arg, uint32_t clone_flags) { struct trapframe tf; memset(&tf, 0, sizeof(struct trapframe)); tf.tf_cs = KERNEL_CS; tf.tf_ds = tf.tf_es = tf.tf_ss = KERNEL_DS; tf.tf_regs.reg_ebx = (uint32_t)fn; tf.tf_regs.reg_edx = (uint32_t)arg; tf.tf_eip = (uint32_t)kernel_thread_entry; return do_fork(clone_flags | CLONE_VM, 0, &tf); } \end{minted} \mintinline{C}{kernel_thread}的功能是通过调用一个函数创建一个新的线程,由于新的线程是由当前线程创建的,这里就调用了\mintinline{C}{do_fork}函数。 \begin{minted}{C} /* do_fork - parent process for a new child process * @clone_flags: used to guide how to clone the child process * @stack: the parent's user stack pointer. if stack==0, It means to fork a kernel thread. * @tf: the trapframe info, which will be copied to child process's proc->tf */ int do_fork(uint32_t clone_flags, uintptr_t stack, struct trapframe *tf) { int ret = -E_NO_FREE_PROC; struct proc_struct *proc; if (nr_process >= MAX_PROCESS) { goto fork_out; } ret = -E_NO_MEM; //LAB4:EXERCISE2 YOUR CODE /* * Some Useful MACROs, Functions and DEFINEs, you can use them in below implementation. * MACROs or Functions: * alloc_proc: create a proc struct and init fields (lab4:exercise1) * setup_kstack: alloc pages with size KSTACKPAGE as process kernel stack * copy_mm: process "proc" duplicate OR share process "current"'s mm according clone_flags * if clone_flags & CLONE_VM, then "share" ; else "duplicate" * copy_thread: setup the trapframe on the process's kernel stack top and * setup the kernel entry point and stack of process * hash_proc: add proc into proc hash_list * get_pid: alloc a unique pid for process * wakeup_proc: set proc->state = PROC_RUNNABLE * VARIABLES: * proc_list: the process set's list * nr_process: the number of process set */ // 1. call alloc_proc to allocate a proc_struct // 2. call setup_kstack to allocate a kernel stack for child process // 3. call copy_mm to dup OR share mm according clone_flag // 4. call copy_thread to setup tf & context in proc_struct // 5. insert proc_struct into hash_list && proc_list // 6. call wakeup_proc to make the new child process RUNNABLE // 7. set ret vaule using child proc's pid if ((proc = alloc_proc()) == NULL) { goto fork_out; } proc->parent = current; if (setup_kstack(proc) != 0) { goto bad_fork_cleanup_proc; } if (copy_mm(clone_flags, proc) != 0) { goto bad_fork_cleanup_kstack; } copy_thread(proc, stack, tf); bool intr_flag; local_intr_save(intr_flag); { proc->pid = get_pid(); hash_proc(proc); list_add(&proc_list, &(proc->list_link)); nr_process ++; } local_intr_restore(intr_flag); wakeup_proc(proc); ret = proc->pid; fork_out: return ret; bad_fork_cleanup_kstack: put_kstack(proc); bad_fork_cleanup_proc: kfree(proc); goto fork_out; } \end{minted} \mintinline{C}{do_fork}函数中,先调用\mintinline{C}{alloc_proc}分配一个进程控制块,再调用\mintinline{C}{setup_kstack}分配一个内核堆栈,再调用\mintinline{C}{copy_mm}将父进程的内存空间复制或者共享给子进程,再调用\mintinline{C}{copy_thread}设置子进程的中断处理,并设置上下文的变量。之后关中断,将新的进程控制块插入到全部进程链表与相同哈希链表中,再开中断。然后把子进程设置成状态为\mintinline{C}{RUNNABLE},返回子进程的\mintinline{C}{pid}。 } \questionandanswer[]{ 试简单分析 uCore中 内核线程的切换过程。(要求说明处理流程,相关的主要函数、它们的功能以及调用关系。) }{} {\kaishu \setlength{\parskip}{2em} 切换线程主要使用的是\mintinline{C}{schedule}函数。 \begin{minted}{C} void schedule(void) { bool intr_flag; list_entry_t *le, *last; struct proc_struct *next = NULL; local_intr_save(intr_flag); { current->need_resched = 0; last = (current == idleproc) ? &proc_list : &(current->list_link); le = last; do { if ((le = list_next(le)) != &proc_list) { next = le2proc(le, list_link); if (next->state == PROC_RUNNABLE) { break; } } } while (le != last); if (next == NULL || next->state != PROC_RUNNABLE) { next = idleproc; } next->runs ++; if (next != current) { proc_run(next); } } local_intr_restore(intr_flag); } \end{minted} 在\mintinline{C}{schedule}中,我们要找到下一次调度的线程,即找到状态为\mintinline{C}{RUNNABLE}的线程,如果当前的线程为\mintinline{C}{idleproc}即CPU空闲的线程则从线进程链表头开始找(因为\mintinline{C}{idleproc}线程不在线程链表中),否则从当前线程的下一个线程开始找。找到需要调度的\mintinline{C}{RUNNABLE}线程后,如果新的线程和老的线程不是同一个线程,则需要调用\mintinline{C}{proc_run}进行切换。 \begin{minted}{C} // proc_run - make process "proc" running on cpu // NOTE: before call switch_to, should load base addr of "proc"'s new PDT void proc_run(struct proc_struct *proc) { if (proc != current) { bool intr_flag; struct proc_struct *prev = current, *next = proc; local_intr_save(intr_flag); { current = proc; load_esp0(next->kstack + KSTACKSIZE); lcr3(next->cr3); switch_to(&(prev->context), &(next->context)); } local_intr_restore(intr_flag); } } \end{minted} 在\mintinline{C}{proc_run}中,调用\mintinline{C}{load_esp0}设置任务状态段,调用\mintinline{C}{lcr3}加载新的进程的页表,之后调用\mintinline{C}{switch_to}保存老的进程的上下文,恢复新的进程的上下文。 \begin{minted}{asm} switch_to: # switch_to(from, to) # save from's registers movl 4(%esp), %eax # eax points to from popl 0(%eax) # save eip !popl movl %esp, 4(%eax) movl %ebx, 8(%eax) movl %ecx, 12(%eax) movl %edx, 16(%eax) movl %esi, 20(%eax) movl %edi, 24(%eax) movl %ebp, 28(%eax) # restore to's registers movl 4(%esp), %eax # not 8(%esp): popped return address already # eax now points to to movl 28(%eax), %ebp movl 24(%eax), %edi movl 20(%eax), %esi movl 16(%eax), %edx movl 12(%eax), %ecx movl 8(%eax), %ebx movl 4(%eax), %esp pushl 0(%eax) # push eip ret \end{minted} 在\mintinline{C}{switch_to}中,从\mintinline{C}{esp+4}的位置加载\mintinline{C}{eax}指针(即\mintinline{C}{&(prev->context)}),并把老的线程中当前的寄存器中的值都放到这个指针所在的\mintinline{C}{context}结构体中,再从\mintinline{C}{esp+8}的位置加载\mintinline{C}{eax}指针(即\mintinline{C}{&(next->context)}),并从这个指针的位置加载新的线程中的上下文寄存器的值,其中\mintinline{C}{eip}需要用\mintinline{C}{popl}和\mintinline{C}{pushl}来设置,不能使用\mintinline{C}{movl}来设置。 } \end{enumerate} \end{enumerate} \end{document}