\documentclass[全部作业]{subfiles} \begin{document} \chapter{单元作业1} \begin{enumerate} \item 证明$P(AB)\ge P(A)+P(B)-1$。 \begin{proof} \begin{zhongwen} $$ \begin{aligned} &设\Omega 表示全集,则A \in \Omega, B \in \Omega \\ &\therefore A\cup B\in \Omega \\ &\therefore P(A\cup B)\le P(\Omega) \\ &\therefore P(A)+P(B)-P(AB)\le 1 \\ &\therefore P(AB)\ge P(A)+P(B)-1 \\ \end{aligned} $$ \end{zhongwen} \end{proof} \item 一副标准扑克牌52张一张一张轮流分发给给4名游戏者,求每人恰好得到1张A的概率。 \begin{proof}[解] \begin{zhongwen} $$ \begin{aligned} &设A表示事件“每人恰好得到一张A”,由盒子模型可知: \\ &P(A) = \frac{\mathrm{P}_{4}^{4}}{4^{4}} = \frac{4!}{256} = \frac{3}{32} \\ \end{aligned} $$ \end{zhongwen} \end{proof} \item 设$P(A)=0.7,P(A-B)=0.3$,求概率$P(\overline{AB})$。 \begin{proof}[解] \begin{zhongwen} $$ \begin{aligned} P(\overline{AB})&=1-P(AB)=1-P(A-(A-B)) \\ &=1-(P(A)-P(A-B))=1-(0.7-0.3)=0.6 \\ \end{aligned} $$ \end{zhongwen} \end{proof} \item 设$P(A)=a,P(B)=b,P(A\cup B)=c$,求概率$P(\overline{\bar{A}\cup \bar{B}})$。 \begin{proof}[解] \begin{zhongwen} $$ \begin{aligned} P(\overline{\bar{A}\cup \bar{B}})=P(A\cap B)=P(A)+P(B)-P(A\cup B)=a+b-c \end{aligned} $$ \end{zhongwen} \end{proof} \item 设$A,B\in \mathcal{F}$,证明$P(A)=P(AB)+P(A \bar{B}), \quad P(A\triangle B)=P(A)+P(B)-2P(AB)$。 \begin{proof} \begin{zhongwen} $$ \begin{aligned} &设\Omega 表示全集 \\ P(A)&=P(A\cap \Omega)=P(A\cap (B\cup \bar{B})) \\ &=P(A(B+\bar{B}))=P(AB+A \bar{B})=P(AB)+P(A \bar{B}) \\ P(A \triangle B)&=P((A\backslash B)\cup (B\backslash A))=P((A-(AB))+(B-(AB))) \\ &=P(A)-P(AB)+P(B)-P(AB)=P(A)+P(B)-2P(AB) \\ \end{aligned} $$ \end{zhongwen} \end{proof} \item 设$\Omega =(-\infty, \infty), A=\{ x\in \Omega: 1\le x\le 5 \}, B=\{ x\in \Omega:35 \} \\ &A\cup B=\{ x\in \Omega: 1\le x<7 \} \\ &B \bar{C}=\{ x\in \Omega:32,A_n=\varnothing \\ &\because \mathcal{F}是\Omega上的事件域,\forall n\geqslant 1,A_n\in \mathcal{F} \\ &\therefore \bigcup_{n=1}^{\infty}A_n=A\cup B\in \mathcal{F} \\ &又\because A,B\in \mathcal{F} \\ &\therefore \bar{A},\bar{B}\in \mathcal{F} \\ &同理,\bar{A}\cup \bar{B}\in \mathcal{F} \\ &\therefore \overline{\bar{A}\cup \bar{B}}=AB\in \mathcal{F} \\ \end{aligned} $$ \end{zhongwen} \end{proof} \end{enumerate} \end{document}