\documentclass[全部作业]{subfiles} \setlength{\textheight}{210em} \setlength{\paperheight}{210em} \begin{document} \chapter{单元作业6} \begin{enumerate} \item 证明随机变量$X$的特征函数是实值函数当且仅当$X$与$-X$同分布。 \begin{proof} \begin{zhongwen} 设$X$的特征函数为$f_{X}(t)$,则 $$ \begin{aligned} X的特征函数是实值函数 \iff& f_{X}(t)=\overline{f_{X}(t)} \\ \iff& f_{X}(t)=f_{X}(-t) \\ \iff& Ee^{itX}=Ee^{i(-t)X} \\ \iff& Ee^{itX}=Ee^{it(-X)} \\ \iff& f_{X}(t)=f_{-X}(t) \\ \iff& X与-X同分布 \\ \end{aligned} $$ \end{zhongwen} \end{proof} \item 设随机变量$X$的特征函数为$f(t)=\left( \frac{2-it}{2} \right) ^{-2}$,求$EX$和$\operatorname{Var}X$。 \begin{proof}[解] \begin{zhongwen} % 根据唯一性定理的推论,可知$X$的概率密度函数为 % $$ % p(x)=\frac{1}{2\pi }\int_{-\infty}^{+\infty} e^{-itx}\left( \frac{2-it}{2} \right) ^{-2} \mathrm{d}t % $$ 根据特征函数的性质,可知 $$ iEX = \left. f'(t) \right|_{t=0}=\left. \left( -\frac{i}{2}\cdot (-2)\left( \frac{2-it}{2} \right) ^{-3} \right) \right|_{t=0}=i\cdot 1^{-3}=i $$ $$ -EX^{2}=i^{2}EX^{2}=\left. f''(t) \right|_{t=0}=\left.\left( i\cdot \left( -\frac{i}{2} \right) \cdot (-3)\left( \frac{2-it}{2} \right) ^{-4} \right) \right|_{t=0}=\left( -\frac{3}{2} \right) \cdot 1^{-4}=-\frac{3}{2} $$ 所以有 $$ EX=1, \qquad EX^{2}=\frac{3}{2}, \qquad \operatorname{Var}X=EX^{2}-(EX)^{2}=\frac{3}{2}-1^{2}=\frac{1}{2} $$ \end{zhongwen} \end{proof} \item 设$X_i$独立同分布,且$X_i\sim \operatorname{Exp}(\lambda ),i=1,2, \ldots ,n$。试用特征函数的方法证明: $$ Y_n=\sum_{i=1}^{n}X_i\sim \operatorname{Ga}(n,\lambda ) $$ \begin{proof} \begin{zhongwen} 根据题意可知$X_i$的概率密度函数为$p(x)=\begin{cases} \lambda e^{-\lambda x},\quad & x>0 \\ 0,\quad & x\leqslant 0 \\ \end{cases}$。根据特征函数的定义,计算$X_i$的特征函数$f(t)$: $$ \begin{aligned} f(t)&=Ee^{itX_{i}}=\int_{-\infty}^{+\infty} e^{itx}p(x) \mathrm{d}x=\int_{0}^{+\infty} e^{itx}\lambda e^{-\lambda x} \mathrm{d}x=\frac{\lambda}{it-\lambda }\int_{0}^{+\infty} e^{(it-\lambda )x} \mathrm{d}(it-\lambda )x \\ &=\frac{\lambda}{it-\lambda }\cdot \left. e^{(it-\lambda )x} \right|_{0}^{+\infty}=\frac{\lambda }{it-\lambda } \cdot \left( \lim_{x \to +\infty}e^{itx-\lambda x}-1 \right)=\frac{\lambda}{it-\lambda }\cdot \left( \lim_{x \to +\infty}e^{-\lambda x}e^{itx} -1 \right) \\ \end{aligned} $$ 对于$\displaystyle \lim_{x \to +\infty}e^{-\lambda x}e^{itx}$,设$a=e^{-\lambda x}e^{itx}$,将其看作复数的模长辐角表示法,则$a$的模长为$e^{-\lambda x}$,辐角为$tx$。由于$\lambda >0$,所以当$x \to +\infty$时,$a$的模长$e^{-\lambda x} \to 0$(辐角$tx \to +\infty$,但不重要),因此$\displaystyle \lim_{x \to +\infty}e^{-\lambda x}e^{itx}=\lim_{x \to +\infty}a=0$。 于是$\displaystyle f(t)=\frac{\lambda}{it-\lambda }\cdot (0-1)=\frac{\lambda }{\lambda -it}$。 由于$X_i$相互独立,所以$Y_n$的特征函数为: $$ g(t)=\left[ f(t) \right] ^{n}=\left( \frac{\lambda }{\lambda -it} \right) ^{n} $$ 再计算$Y\sim \operatorname{Ga}(n,\lambda )$的特征函数: $$ \begin{aligned} h(t)&=Ee^{itY}=\int_{-\infty}^{+\infty} e^{itx}p(x) \mathrm{d}x=\int_{0}^{+\infty} e^{itx} \frac{\lambda ^{n}}{\Gamma (n)}x^{n-1}e^{-\lambda x} \mathrm{d}x \\ &=\frac{\lambda ^{n}}{(\lambda -it)^{n}}\int_{0}^{+\infty} \frac{(\lambda -it)^{n}}{\Gamma (n)}x^{n-1}e^{(it-\lambda )x} \mathrm{d}x \\ \end{aligned} $$ 注意到$\displaystyle \frac{(\lambda -it)^{n}}{\Gamma (n)}x^{n-1}e^{(it-\lambda )}$(零延拓后)为$\operatorname{Ga}(n, \lambda -it)$的概率密度函数,根据分布函数的正则性,$\displaystyle \int_{0}^{+\infty} \frac{(\lambda -it)^{n}}{\Gamma (n)}x^{n-1}e^{(it-\lambda )} \mathrm{d}x=1$,所以 $$ h(t)=\frac{\lambda ^{n}}{(\lambda -it)^{n}}=\left( \frac{\lambda }{\lambda -it} \right) ^{n}=g(t) $$ 根据特征函数的唯一性,$Y_n$与$Y$同分布,即 $$ Y_n=\sum_{i=1}^{n}X_i\sim \operatorname{Ga}(n,\lambda ) $$ \end{zhongwen} \end{proof} \item 设$X_n\xrightarrow{P}X,X_n\xrightarrow{P}Y$。证明$P(X=Y)=1$。 \begin{proof} \begin{zhongwen} 根据依概率收敛的运算性质,有 $$ 0=X_n-X_n\xrightarrow{P}X-Y $$ 即对任意的$\varepsilon>0$,有 $$ \lim_{n \to \infty} P(\left\vert 0-(X-Y) \right\vert \geqslant \varepsilon)=\lim_{n \to \infty}P(\left\vert X-Y \right\vert \geqslant \varepsilon)=P(\left\vert X-Y \right\vert \geqslant \varepsilon)=0 $$ 令$\varepsilon \to 0$,则根据概率的下连续性,可得 $$ P(\left\vert X-Y \right\vert >0)=0 $$ 由于$\left\vert X-Y \right\vert \geqslant 0$,所以 $$ P(\left\vert X-Y \right\vert =0)=1-P(\left\vert X-Y \right\vert >0)=1 $$ 即$P(X=Y)=1$。 \end{zhongwen} \end{proof} \item 证明$\displaystyle \lim_{n \to \infty}E\left( \frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert } \right) =0$当且仅当$X_n\xrightarrow{P}0$。 \begin{proof} \begin{zhongwen} 对任意的$\varepsilon>0$,$1=1_{\{ \left\vert X_n \right\vert \leqslant \varepsilon \}}+1_{\{ \left\vert X_n \right\vert >\varepsilon \}}$。所以有如下不等式: $$ \begin{aligned} \frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert }&=\frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert }1_{\{ \left\vert X_n \right\vert \leqslant \varepsilon \}}+\frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert }1_{\{ \left\vert X_n \right\vert >\varepsilon \}} \\ &\leqslant \left\vert X_n \right\vert 1_{\{ \left\vert X_n \right\vert \leqslant \varepsilon \}}+1_{\{ \left\vert X_n \right\vert >\varepsilon \}}\leqslant \varepsilon+1_{\{ \left\vert X_n \right\vert >\varepsilon \}} \\ \end{aligned} $$ 等式两边同时取期望,则 $$ E\left( \frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert } \right) \leqslant E(\varepsilon+1_{\{ \left\vert X_n \right\vert >\varepsilon \}})=\varepsilon+E(1_{\{ \left\vert X_n \right\vert >\varepsilon \}}) $$ 若$X_n\xrightarrow{P}0$,则$\displaystyle \lim_{n \to \infty}P(\left\vert X_n \right\vert >\varepsilon)=0$,所以$\displaystyle \lim_{n \to \infty}E(1_{\{ \left\vert X_n \right\vert >\varepsilon \}})=0$。 于是上述不等式两边同时取$n \to 0$时的极限可得 $$ \lim_{n \to \infty}E\left( \frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert } \right) \leqslant \varepsilon $$ 所以$\displaystyle \lim_{n \to \infty}E\left( \frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert } \right) =0$。 若$\displaystyle \lim_{n \to \infty}E\left( \frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert } \right) =0$,这里使用和书上不同的方法。根据马尔可夫不等式的一般形式,有 $$ P(\left\vert X_n \right\vert >\varepsilon)\leqslant \frac{E\left( \frac{\left\vert X_n \right\vert }{1+\left\vert X_n \right\vert } \right) }{\frac{\varepsilon}{1+\varepsilon}} $$ 不等式两边同时取$n \to 0$时的极限可得$\displaystyle \lim_{n \to \infty}P(\left\vert X_n \right\vert >\varepsilon)=0$,即$X_n\xrightarrow{P}0$。 \end{zhongwen} \end{proof} \end{enumerate} \end{document}