228 lines
8.4 KiB
TeX
228 lines
8.4 KiB
TeX
|
\documentclass[全部作业]{subfiles}
|
|||
|
|
|||
|
\begin{document}
|
|||
|
\chapter{单元作业4}
|
|||
|
\begin{enumerate}
|
|||
|
\item 若二维离散型随机变量$(X,Y)$有联合分布列如下:
|
|||
|
|
|||
|
\begin{center}
|
|||
|
% \renewcommand\arraystretch{1.5}
|
|||
|
\begin{tabular}{c|ccc}
|
|||
|
% \hline
|
|||
|
\diagbox{$X$}{$Y$} & $0$ & $1$ & $2$ \\
|
|||
|
\hline
|
|||
|
$0$ & $\frac{1}{2}$ & $\frac{1}{8}$ & $\frac{1}{4}$ \\
|
|||
|
% \hline
|
|||
|
$1$ & $\frac{1}{16}$ & $\frac{1}{16}$ & $0$ \\
|
|||
|
% \hline
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
求$X$与$Y$的边际分布列。
|
|||
|
|
|||
|
\begin{proof}[解]
|
|||
|
\begin{zhongwen}
|
|||
|
|
|||
|
$X$和$Y$的边际分布列分别为
|
|||
|
|
|||
|
\begin{center}
|
|||
|
\renewcommand\arraystretch{1.5}
|
|||
|
\begin{tabular}{c|cc}
|
|||
|
$X$ & $0$ & $1$ \\
|
|||
|
\hline
|
|||
|
$P$ & \makecell{$\dfrac{7}{8}$} & $\dfrac{1}{8}$ \\
|
|||
|
\end{tabular} \qquad
|
|||
|
\begin{tabular}{c|ccc}
|
|||
|
$Y$ & $0$ & $1$ & $2$ \\
|
|||
|
\hline
|
|||
|
$P$ & $\dfrac{9}{16}$ & $\dfrac{3}{16}$ & $\dfrac{1}{4}$ \\
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
\end{zhongwen}
|
|||
|
\end{proof}
|
|||
|
|
|||
|
\item 设随机变量$(X,Y)$的概率密度函数为
|
|||
|
$$
|
|||
|
p(x,y)=\begin{cases}
|
|||
|
3x,\quad & \text{若}0<y<x<1; \\
|
|||
|
0,\quad & \text{其他}. \\
|
|||
|
\end{cases}
|
|||
|
$$
|
|||
|
求$X$与$Y$的边际概率密度函数,并判断$X$与$Y$是否互相独立。
|
|||
|
|
|||
|
\begin{proof}[解]
|
|||
|
\begin{zhongwen}
|
|||
|
|
|||
|
\begin{window}[0,r,
|
|||
|
{\includexopp[0.3]{4.2.1}},
|
|||
|
{}]
|
|||
|
$$
|
|||
|
\begin{aligned}
|
|||
|
p_{X}(x)&=\int_{-\infty}^{+\infty} p(x,y) \mathrm{d}y=\begin{cases}
|
|||
|
\int_{0}^{x} 3x \mathrm{d}y,\quad & 0\leqslant x\leqslant 1 \\
|
|||
|
0,\quad & x<0 \text{或} x>1 \\
|
|||
|
\end{cases}\\
|
|||
|
&=\begin{cases}
|
|||
|
3x^{2},\quad & 0\leqslant x\leqslant 1 \\
|
|||
|
0,\quad & x<0 或x>1 \\
|
|||
|
\end{cases}
|
|||
|
\end{aligned}
|
|||
|
$$
|
|||
|
|
|||
|
$$
|
|||
|
\begin{aligned}
|
|||
|
p_{Y}(y)&=\int_{-\infty}^{+\infty} p(x,y) \mathrm{d}x=\begin{cases}
|
|||
|
\int_{y}^{1} 3x \mathrm{d}x, \quad & 0\leqslant y\leqslant 1 \\
|
|||
|
0,\quad & x<0 或 x>1 \\
|
|||
|
\end{cases}\\
|
|||
|
&=\begin{cases}
|
|||
|
\frac{3}{2}-\frac{3}{2}y^{2},\quad & 0\leqslant y\leqslant 1 \\
|
|||
|
0,\quad & y<0 或 y>1 \\
|
|||
|
\end{cases}
|
|||
|
\end{aligned}
|
|||
|
$$
|
|||
|
\end{window}
|
|||
|
|
|||
|
\noindent$p(1,1)=3,p_{X}(1)=3,p_{Y}(1)=0$,于是$p(1,1)\neq p_{X}(1)\cdot p_{Y}(1)$,所以$X$和$Y$互相不独立。
|
|||
|
|
|||
|
\end{zhongwen}
|
|||
|
\end{proof}
|
|||
|
|
|||
|
\item 设随机变量$X$与$Y$相互独立,且$X$服从均匀分布$U(0,1)$,$Y$服从指数分布$\operatorname{Exp}(1)$。求
|
|||
|
|
|||
|
\begin{enumerate}
|
|||
|
\item $(X,Y)$的联合概率密度函数$p(x,y)$;
|
|||
|
\begin{proof}[解]
|
|||
|
\begin{zhongwen}
|
|||
|
|
|||
|
$$
|
|||
|
p_{X}(x)=\begin{cases}
|
|||
|
1,\quad & x\in [0,1] \\
|
|||
|
0,\quad & x<0 或 x>1 \\
|
|||
|
\end{cases}\quad p_{Y}(y)=\begin{cases}
|
|||
|
e^{-y},\quad & y\geqslant 0 \\
|
|||
|
0,\quad & y< 0 \\
|
|||
|
\end{cases}
|
|||
|
$$
|
|||
|
|
|||
|
$$
|
|||
|
p(x,y)=\begin{cases}
|
|||
|
e^{-y},\quad & x\in [0,1], y\geqslant 0 \\
|
|||
|
0,\quad & 其他 \\
|
|||
|
\end{cases}
|
|||
|
$$
|
|||
|
\end{zhongwen}
|
|||
|
\end{proof}
|
|||
|
\item 概率$P(X+Y\leqslant 1)$;
|
|||
|
|
|||
|
\begin{proof}[解]
|
|||
|
\begin{zhongwen}
|
|||
|
|
|||
|
令$Z=X+Y$,则随机变量$Z$的概率密度函数为
|
|||
|
$$
|
|||
|
p_{Z}(z)=\int_{-\infty}^{+\infty} p_{X}(x)p_{Y}(z-x) \mathrm{d}x=\begin{cases}
|
|||
|
\int_{0}^{1} e^{x-z} \mathrm{d}x ,\quad & z>1\\
|
|||
|
\int_{0}^{z} e^{x-z} \mathrm{d}x,\quad & 0\leqslant z\leqslant 1 \\
|
|||
|
0,\quad & z<0 \\
|
|||
|
\end{cases}=\begin{cases}
|
|||
|
e^{1-z}-e^{-z},\quad & z>1 \\
|
|||
|
1-e^{-z},\quad & 0\leqslant z\leqslant 1 \\
|
|||
|
0,\quad & z<0 \\
|
|||
|
\end{cases}
|
|||
|
$$
|
|||
|
所以
|
|||
|
$$
|
|||
|
P(X+Y\leqslant 1)=\int_{-\infty}^{1} p_{Z}(z) \mathrm{d}z=\int_{0}^{1} (1-e^{-z}) \mathrm{d}z=1+(\frac{1}{e}-1)=\frac{1}{e}
|
|||
|
$$
|
|||
|
\end{zhongwen}
|
|||
|
\end{proof}
|
|||
|
\item 概率$P(X\leqslant Y)$。
|
|||
|
|
|||
|
\begin{proof}[解]
|
|||
|
\begin{zhongwen}
|
|||
|
令随机变量$Z=X-Y$,则$Z$的概率密度函数为
|
|||
|
$$
|
|||
|
p_{Z}(z)=\int_{-\infty}^{+\infty} p(x,x-z) \mathrm{d}x=\begin{cases}
|
|||
|
0,\quad & z>1 \\
|
|||
|
\int_{z}^{1} e^{z-x} \mathrm{d}x,\quad & 0\leqslant z\leqslant 1 \\
|
|||
|
\int_{0}^{1} e^{z-x} \mathrm{d}x,\quad & z<0 \\
|
|||
|
\end{cases}=\begin{cases}
|
|||
|
0,\quad & z>1 \\
|
|||
|
1-e^{z-1},\quad & 0\leqslant z\leqslant 1 \\
|
|||
|
e^{z}-e^{z-1},\quad & z<0 \\
|
|||
|
\end{cases}
|
|||
|
$$
|
|||
|
所以
|
|||
|
$$
|
|||
|
P(X\leqslant Y)=P(X-Y\leqslant 0)=\int_{-\infty}^{0} (e^{z}-e^{z-1}) \mathrm{d}z=1-\frac{1}{e}
|
|||
|
$$
|
|||
|
\end{zhongwen}
|
|||
|
\end{proof}
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
\item 设随机变量$(X,Y)$的概率密度函数为
|
|||
|
$$
|
|||
|
p(x,y)=\begin{cases}
|
|||
|
Ae^{-(3x+2y)},\quad & x>0,y>0; \\
|
|||
|
0,\quad & \text{otherwise}. \\
|
|||
|
\end{cases}
|
|||
|
$$
|
|||
|
求:
|
|||
|
\begin{enumerate}
|
|||
|
\item 常数$A$的值;
|
|||
|
|
|||
|
\begin{proof}[解]
|
|||
|
\begin{zhongwen}
|
|||
|
$$
|
|||
|
\begin{aligned}
|
|||
|
&\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x,y) \mathrm{d}x \mathrm{d}y=\int_{0}^{+\infty} \int_{0}^{+\infty} Ae^{-(3x+2y)} \mathrm{d}x \mathrm{d}y=\int_{0}^{+\infty} \left. -\frac{1}{3}Ae^{-(3x+2y)} \right|_{0}^{+\infty} \mathrm{d}y\\
|
|||
|
=&\int_{0}^{+\infty} \frac{1}{3}Ae^{-2y} \mathrm{d}y=\left. -\frac{1}{6}Ae^{-2y} \right|_{0}^{+\infty}=\frac{1}{6}A=1
|
|||
|
\end{aligned}
|
|||
|
$$
|
|||
|
所以常数$A$的值为$6$。
|
|||
|
\end{zhongwen}
|
|||
|
\end{proof}
|
|||
|
\item 分布函数$F(x,y)$;
|
|||
|
|
|||
|
\begin{proof}[解]
|
|||
|
\begin{zhongwen}
|
|||
|
|
|||
|
由题意可知,当$x\leqslant 0$ 或$y\leqslant 0$时,$F(x,y)=0$。
|
|||
|
|
|||
|
当$x>0,y>0$时,$
|
|||
|
\displaystyle F(x,y)
|
|||
|
=\int_{0}^{y} \int_{0}^{x} 6e^{-(3u+2v)} \mathrm{d}u \mathrm{d}v
|
|||
|
=\int_{0}^{y} \left. -2e^{-(3u+2v)} \right|_{0}^{x} \mathrm{d}v
|
|||
|
=\int_{0}^{y} \left(2e^{-2v}-2e^{-(3x+2v)}\right) \mathrm{d}v
|
|||
|
=\left. -e^{-2v} \right|_{0}^{y}+\left. e^{-(3x+2v)} \right|_{0}^{y}
|
|||
|
=-e^{-2y}+1+e^{-(3x+2y)}-e^{-3x}
|
|||
|
=e^{-(3x+2y)}-e^{-3x}-e^{-2y}+1
|
|||
|
$
|
|||
|
|
|||
|
所以
|
|||
|
$$
|
|||
|
\begin{aligned}
|
|||
|
F(x,y)=\begin{cases}
|
|||
|
e^{-(3x+2y)}-e^{-3x}-e^{-2y}+1,\quad & x>0,y>0 \\
|
|||
|
0,\quad & \text{otherwise} \\
|
|||
|
\end{cases}
|
|||
|
\end{aligned}
|
|||
|
$$
|
|||
|
\end{zhongwen}
|
|||
|
\end{proof}
|
|||
|
\item 概率$P(-2<X\leqslant 2,-3<Y\leqslant 3)$。
|
|||
|
|
|||
|
\begin{proof}[解]
|
|||
|
\begin{zhongwen}
|
|||
|
$$
|
|||
|
\begin{aligned}
|
|||
|
&P(-2<X\leqslant 2,-3<Y\leqslant 3)=P(X\leqslant 2,Y\leqslant 3)=F(2,3)\\
|
|||
|
=&e^{-(3\times 2+2\times 3)}-e^{-3\times 2}-e^{-2\times 3}+1 \\
|
|||
|
=&1 +e^{-12} - 2e^{-6}
|
|||
|
\end{aligned}
|
|||
|
$$
|
|||
|
\end{zhongwen}
|
|||
|
\end{proof}
|
|||
|
\end{enumerate}
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
\end{document}
|