mirror of
https://github.com/PrimitiveAnything/PrimitiveAnything.git
synced 2025-09-18 05:22:48 +08:00
309 lines
9.8 KiB
Python
Executable File
309 lines
9.8 KiB
Python
Executable File
# -*- coding: utf-8 -*-
|
|
|
|
import math
|
|
import torch
|
|
import torch.nn as nn
|
|
from typing import Optional
|
|
import warnings
|
|
|
|
from .checkpoint import checkpoint
|
|
|
|
|
|
def _trunc_normal_(tensor, mean, std, a, b):
|
|
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
|
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
|
def norm_cdf(x):
|
|
# Computes standard normal cumulative distribution function
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
|
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
|
"The distribution of values may be incorrect.",
|
|
stacklevel=2)
|
|
|
|
# Values are generated by using a truncated uniform distribution and
|
|
# then using the inverse CDF for the normal distribution.
|
|
# Get upper and lower cdf values
|
|
l = norm_cdf((a - mean) / std)
|
|
u = norm_cdf((b - mean) / std)
|
|
|
|
# Uniformly fill tensor with values from [l, u], then translate to
|
|
# [2l-1, 2u-1].
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
|
|
|
# Use inverse cdf transform for normal distribution to get truncated
|
|
# standard normal
|
|
tensor.erfinv_()
|
|
|
|
# Transform to proper mean, std
|
|
tensor.mul_(std * math.sqrt(2.))
|
|
tensor.add_(mean)
|
|
|
|
# Clamp to ensure it's in the proper range
|
|
tensor.clamp_(min=a, max=b)
|
|
return tensor
|
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
|
# type: (Tensor | nn.Parameter, float, float, float, float) -> Tensor
|
|
r"""Fills the input Tensor with values drawn from a truncated
|
|
normal distribution. The values are effectively drawn from the
|
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
|
with values outside :math:`[a, b]` redrawn until they are within
|
|
the bounds. The method used for generating the random values works
|
|
best when :math:`a \leq \text{mean} \leq b`.
|
|
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
|
|
applied while sampling the normal with mean/std applied, therefore a, b args
|
|
should be adjusted to match the range of mean, std args.
|
|
Args:
|
|
tensor: an n-dimensional `torch.Tensor`
|
|
mean: the mean of the normal distribution
|
|
std: the standard deviation of the normal distribution
|
|
a: the minimum cutoff value
|
|
b: the maximum cutoff value
|
|
Examples:
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.trunc_normal_(w)
|
|
"""
|
|
with torch.no_grad():
|
|
return _trunc_normal_(tensor, mean, std, a, b)
|
|
|
|
|
|
def init_weights(m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
|
|
class MultiheadAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
device: torch.device,
|
|
dtype: torch.dtype,
|
|
n_ctx: int,
|
|
width: int,
|
|
heads: int,
|
|
qkv_bias: bool
|
|
):
|
|
super().__init__()
|
|
self.n_ctx = n_ctx
|
|
self.width = width
|
|
self.heads = heads
|
|
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias, device=device, dtype=dtype)
|
|
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
|
self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx)
|
|
|
|
def forward(self, x):
|
|
x = self.c_qkv(x)
|
|
x = checkpoint(self.attention, (x,), (), True)
|
|
x = self.c_proj(x)
|
|
return x
|
|
|
|
|
|
class QKVMultiheadAttention(nn.Module):
|
|
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int):
|
|
super().__init__()
|
|
self.device = device
|
|
self.dtype = dtype
|
|
self.heads = heads
|
|
self.n_ctx = n_ctx
|
|
|
|
def forward(self, qkv):
|
|
bs, n_ctx, width = qkv.shape
|
|
attn_ch = width // self.heads // 3
|
|
scale = 1 / math.sqrt(attn_ch)
|
|
qkv = qkv.view(bs, n_ctx, self.heads, -1)
|
|
q, k, v = torch.split(qkv, attn_ch, dim=-1)
|
|
weight = torch.einsum("bthc,bshc->bhts", q, k) * scale
|
|
wdtype = weight.dtype
|
|
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
|
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
|
|
|
|
|
class ResidualAttentionBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
device: torch.device,
|
|
dtype: torch.dtype,
|
|
n_ctx: int,
|
|
width: int,
|
|
heads: int,
|
|
qkv_bias: bool = True,
|
|
use_checkpoint: bool = False
|
|
):
|
|
super().__init__()
|
|
|
|
self.use_checkpoint = use_checkpoint
|
|
|
|
self.attn = MultiheadAttention(
|
|
device=device,
|
|
dtype=dtype,
|
|
n_ctx=n_ctx,
|
|
width=width,
|
|
heads=heads,
|
|
qkv_bias=qkv_bias
|
|
)
|
|
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
|
self.mlp = MLP(device=device, dtype=dtype, width=width)
|
|
self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)
|
|
|
|
def _forward(self, x: torch.Tensor):
|
|
x = x + self.attn(self.ln_1(x))
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
|
|
|
|
|
|
class MultiheadCrossAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
device: torch.device,
|
|
dtype: torch.dtype,
|
|
width: int,
|
|
heads: int,
|
|
qkv_bias: bool = True,
|
|
n_data: Optional[int] = None,
|
|
data_width: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.n_data = n_data
|
|
self.width = width
|
|
self.heads = heads
|
|
self.data_width = width if data_width is None else data_width
|
|
self.c_q = nn.Linear(width, width, bias=qkv_bias, device=device, dtype=dtype)
|
|
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias, device=device, dtype=dtype)
|
|
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
|
|
self.attention = QKVMultiheadCrossAttention(
|
|
device=device, dtype=dtype, heads=heads, n_data=n_data
|
|
)
|
|
|
|
def forward(self, x, data):
|
|
x = self.c_q(x)
|
|
data = self.c_kv(data)
|
|
x = checkpoint(self.attention, (x, data), (), True)
|
|
x = self.c_proj(x)
|
|
return x
|
|
|
|
|
|
class QKVMultiheadCrossAttention(nn.Module):
|
|
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_data: Optional[int] = None):
|
|
super().__init__()
|
|
self.device = device
|
|
self.dtype = dtype
|
|
self.heads = heads
|
|
self.n_data = n_data
|
|
|
|
def forward(self, q, kv):
|
|
_, n_ctx, _ = q.shape
|
|
bs, n_data, width = kv.shape
|
|
attn_ch = width // self.heads // 2
|
|
scale = 1 / math.sqrt(attn_ch)
|
|
q = q.view(bs, n_ctx, self.heads, -1)
|
|
kv = kv.view(bs, n_data, self.heads, -1)
|
|
k, v = torch.split(kv, attn_ch, dim=-1)
|
|
weight = torch.einsum("bthc,bshc->bhts", q, k) * scale
|
|
wdtype = weight.dtype
|
|
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
|
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
|
|
|
|
|
class ResidualCrossAttentionBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
device: Optional[torch.device],
|
|
dtype: Optional[torch.dtype],
|
|
n_data: Optional[int] = None,
|
|
width: int,
|
|
heads: int,
|
|
data_width: Optional[int] = None,
|
|
qkv_bias: bool = True
|
|
):
|
|
super().__init__()
|
|
|
|
if data_width is None:
|
|
data_width = width
|
|
|
|
self.attn = MultiheadCrossAttention(
|
|
device=device,
|
|
dtype=dtype,
|
|
n_data=n_data,
|
|
width=width,
|
|
heads=heads,
|
|
data_width=data_width,
|
|
qkv_bias=qkv_bias
|
|
)
|
|
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
|
|
self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
|
|
self.mlp = MLP(device=device, dtype=dtype, width=width)
|
|
self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)
|
|
|
|
def forward(self, x: torch.Tensor, data: torch.Tensor):
|
|
x = x + self.attn(self.ln_1(x), self.ln_2(data))
|
|
x = x + self.mlp(self.ln_3(x))
|
|
return x
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, *,
|
|
device: Optional[torch.device],
|
|
dtype: Optional[torch.dtype],
|
|
width: int):
|
|
super().__init__()
|
|
self.width = width
|
|
self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
|
|
self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
|
|
self.gelu = nn.GELU()
|
|
|
|
def forward(self, x):
|
|
return self.c_proj(self.gelu(self.c_fc(x)))
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
device: Optional[torch.device],
|
|
dtype: Optional[torch.dtype],
|
|
n_ctx: int,
|
|
width: int,
|
|
layers: int,
|
|
heads: int,
|
|
qkv_bias: bool = True,
|
|
use_checkpoint: bool = False
|
|
):
|
|
super().__init__()
|
|
self.n_ctx = n_ctx
|
|
self.width = width
|
|
self.layers = layers
|
|
self.resblocks = nn.ModuleList(
|
|
[
|
|
ResidualAttentionBlock(
|
|
device=device,
|
|
dtype=dtype,
|
|
n_ctx=n_ctx,
|
|
width=width,
|
|
heads=heads,
|
|
qkv_bias=qkv_bias,
|
|
use_checkpoint=use_checkpoint
|
|
)
|
|
for _ in range(layers)
|
|
]
|
|
)
|
|
|
|
self.apply(init_weights)
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
for block in self.resblocks:
|
|
x = block(x)
|
|
return x
|