mirror of
https://github.com/PrimitiveAnything/PrimitiveAnything.git
synced 2025-09-18 05:22:48 +08:00
219 lines
6.2 KiB
Python
Executable File
219 lines
6.2 KiB
Python
Executable File
# -*- coding: utf-8 -*-
|
|
|
|
import math
|
|
import torch
|
|
import torch.nn as nn
|
|
from typing import Optional
|
|
|
|
from .checkpoint import checkpoint
|
|
from .transformer_blocks import (
|
|
init_linear,
|
|
MLP,
|
|
MultiheadCrossAttention,
|
|
MultiheadAttention,
|
|
ResidualAttentionBlock
|
|
)
|
|
|
|
|
|
class AdaLayerNorm(nn.Module):
|
|
def __init__(self,
|
|
device: torch.device,
|
|
dtype: torch.dtype,
|
|
width: int):
|
|
|
|
super().__init__()
|
|
|
|
self.silu = nn.SiLU(inplace=True)
|
|
self.linear = nn.Linear(width, width * 2, device=device, dtype=dtype)
|
|
self.layernorm = nn.LayerNorm(width, elementwise_affine=False, device=device, dtype=dtype)
|
|
|
|
def forward(self, x, timestep):
|
|
emb = self.linear(timestep)
|
|
scale, shift = torch.chunk(emb, 2, dim=2)
|
|
x = self.layernorm(x) * (1 + scale) + shift
|
|
return x
|
|
|
|
|
|
class DitBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
device: torch.device,
|
|
dtype: torch.dtype,
|
|
n_ctx: int,
|
|
width: int,
|
|
heads: int,
|
|
context_dim: int,
|
|
qkv_bias: bool = False,
|
|
init_scale: float = 1.0,
|
|
use_checkpoint: bool = False
|
|
):
|
|
super().__init__()
|
|
|
|
self.use_checkpoint = use_checkpoint
|
|
|
|
self.attn = MultiheadAttention(
|
|
device=device,
|
|
dtype=dtype,
|
|
n_ctx=n_ctx,
|
|
width=width,
|
|
heads=heads,
|
|
init_scale=init_scale,
|
|
qkv_bias=qkv_bias
|
|
)
|
|
self.ln_1 = AdaLayerNorm(device, dtype, width)
|
|
|
|
if context_dim is not None:
|
|
self.ln_2 = AdaLayerNorm(device, dtype, width)
|
|
self.cross_attn = MultiheadCrossAttention(
|
|
device=device,
|
|
dtype=dtype,
|
|
width=width,
|
|
heads=heads,
|
|
data_width=context_dim,
|
|
init_scale=init_scale,
|
|
qkv_bias=qkv_bias
|
|
)
|
|
|
|
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
|
|
self.ln_3 = AdaLayerNorm(device, dtype, width)
|
|
|
|
def forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
|
|
return checkpoint(self._forward, (x, t, context), self.parameters(), self.use_checkpoint)
|
|
|
|
def _forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
|
|
x = x + self.attn(self.ln_1(x, t))
|
|
if context is not None:
|
|
x = x + self.cross_attn(self.ln_2(x, t), context)
|
|
x = x + self.mlp(self.ln_3(x, t))
|
|
return x
|
|
|
|
|
|
class DiT(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
device: Optional[torch.device],
|
|
dtype: Optional[torch.dtype],
|
|
n_ctx: int,
|
|
width: int,
|
|
layers: int,
|
|
heads: int,
|
|
context_dim: int,
|
|
init_scale: float = 0.25,
|
|
qkv_bias: bool = False,
|
|
use_checkpoint: bool = False
|
|
):
|
|
super().__init__()
|
|
self.n_ctx = n_ctx
|
|
self.width = width
|
|
self.layers = layers
|
|
|
|
self.resblocks = nn.ModuleList(
|
|
[
|
|
DitBlock(
|
|
device=device,
|
|
dtype=dtype,
|
|
n_ctx=n_ctx,
|
|
width=width,
|
|
heads=heads,
|
|
context_dim=context_dim,
|
|
qkv_bias=qkv_bias,
|
|
init_scale=init_scale,
|
|
use_checkpoint=use_checkpoint
|
|
)
|
|
for _ in range(layers)
|
|
]
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
|
|
for block in self.resblocks:
|
|
x = block(x, t, context)
|
|
return x
|
|
|
|
|
|
class UNetDiffusionTransformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
device: Optional[torch.device],
|
|
dtype: Optional[torch.dtype],
|
|
n_ctx: int,
|
|
width: int,
|
|
layers: int,
|
|
heads: int,
|
|
init_scale: float = 0.25,
|
|
qkv_bias: bool = False,
|
|
skip_ln: bool = False,
|
|
use_checkpoint: bool = False
|
|
):
|
|
super().__init__()
|
|
|
|
self.n_ctx = n_ctx
|
|
self.width = width
|
|
self.layers = layers
|
|
|
|
self.encoder = nn.ModuleList()
|
|
for _ in range(layers):
|
|
resblock = ResidualAttentionBlock(
|
|
device=device,
|
|
dtype=dtype,
|
|
n_ctx=n_ctx,
|
|
width=width,
|
|
heads=heads,
|
|
init_scale=init_scale,
|
|
qkv_bias=qkv_bias,
|
|
use_checkpoint=use_checkpoint
|
|
)
|
|
self.encoder.append(resblock)
|
|
|
|
self.middle_block = ResidualAttentionBlock(
|
|
device=device,
|
|
dtype=dtype,
|
|
n_ctx=n_ctx,
|
|
width=width,
|
|
heads=heads,
|
|
init_scale=init_scale,
|
|
qkv_bias=qkv_bias,
|
|
use_checkpoint=use_checkpoint
|
|
)
|
|
|
|
self.decoder = nn.ModuleList()
|
|
for _ in range(layers):
|
|
resblock = ResidualAttentionBlock(
|
|
device=device,
|
|
dtype=dtype,
|
|
n_ctx=n_ctx,
|
|
width=width,
|
|
heads=heads,
|
|
init_scale=init_scale,
|
|
qkv_bias=qkv_bias,
|
|
use_checkpoint=use_checkpoint
|
|
)
|
|
linear = nn.Linear(width * 2, width, device=device, dtype=dtype)
|
|
init_linear(linear, init_scale)
|
|
|
|
layer_norm = nn.LayerNorm(width, device=device, dtype=dtype) if skip_ln else None
|
|
|
|
self.decoder.append(nn.ModuleList([resblock, linear, layer_norm]))
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
|
|
enc_outputs = []
|
|
for block in self.encoder:
|
|
x = block(x)
|
|
enc_outputs.append(x)
|
|
|
|
x = self.middle_block(x)
|
|
|
|
for i, (resblock, linear, layer_norm) in enumerate(self.decoder):
|
|
x = torch.cat([enc_outputs.pop(), x], dim=-1)
|
|
x = linear(x)
|
|
|
|
if layer_norm is not None:
|
|
x = layer_norm(x)
|
|
|
|
x = resblock(x)
|
|
|
|
return x
|