hiyouga ff5ebb6a86 support bf16 ppo #551
Former-commit-id: 092088967de7409a2d51847cfc7afc83a8887320
2023-08-18 00:40:32 +08:00

197 lines
7.3 KiB
Python

import os
import sys
import torch
import datasets
import transformers
from typing import Any, Dict, Optional, Tuple
from transformers import HfArgumentParser, Seq2SeqTrainingArguments
from llmtuner.extras.logging import get_logger
from llmtuner.hparams import (
ModelArguments,
DataArguments,
FinetuningArguments,
GeneratingArguments,
GeneralArguments
)
logger = get_logger(__name__)
def _parse_args(parser: HfArgumentParser, args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
if args is not None:
return parser.parse_dict(args)
elif len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
return parser.parse_yaml_file(os.path.abspath(sys.argv[1]))
elif len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
return parser.parse_json_file(os.path.abspath(sys.argv[1]))
else:
return parser.parse_args_into_dataclasses()
def parse_train_args(
args: Optional[Dict[str, Any]] = None
) -> Tuple[
ModelArguments,
DataArguments,
Seq2SeqTrainingArguments,
FinetuningArguments,
GeneratingArguments,
GeneralArguments
]:
parser = HfArgumentParser((
ModelArguments,
DataArguments,
Seq2SeqTrainingArguments,
FinetuningArguments,
GeneratingArguments,
GeneralArguments
))
return _parse_args(parser, args)
def parse_infer_args(
args: Optional[Dict[str, Any]] = None
) -> Tuple[
ModelArguments,
DataArguments,
FinetuningArguments,
GeneratingArguments
]:
parser = HfArgumentParser((
ModelArguments,
DataArguments,
FinetuningArguments,
GeneratingArguments
))
return _parse_args(parser, args)
def get_train_args(
args: Optional[Dict[str, Any]] = None
) -> Tuple[
ModelArguments,
DataArguments,
Seq2SeqTrainingArguments,
FinetuningArguments,
GeneratingArguments,
GeneralArguments
]:
model_args, data_args, training_args, finetuning_args, generating_args, general_args = parse_train_args(args)
# Setup logging
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Check arguments (do not check finetuning_args since it may be loaded from checkpoints)
data_args.init_for_training()
if general_args.stage != "sft" and training_args.predict_with_generate:
raise ValueError("`predict_with_generate` cannot be set as True except SFT.")
if training_args.do_train and training_args.predict_with_generate:
raise ValueError("`predict_with_generate` cannot be set as True while training.")
if general_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate:
raise ValueError("Please enable `predict_with_generate` to save model predictions.")
if general_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type != "lora":
raise ValueError("RM and PPO training can only be performed with the LoRA method.")
if general_args.stage in ["ppo", "dpo"] and not training_args.do_train:
raise ValueError("PPO and DPO stage can only be performed at training.")
if general_args.stage == "ppo" and model_args.reward_model is None:
raise ValueError("Reward model is necessary for PPO training.")
if training_args.max_steps == -1 and data_args.streaming:
raise ValueError("Please specify `max_steps` in streaming mode.")
if general_args.stage == "ppo" and data_args.streaming:
raise ValueError("Streaming mode does not suppport PPO training currently.")
if data_args.val_size > 1e-6 and data_args.val_size < 1 and data_args.streaming:
raise ValueError("Streaming mode should have an integer val size.")
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
if model_args.checkpoint_dir is not None:
if finetuning_args.finetuning_type != "lora":
if len(model_args.checkpoint_dir) != 1:
raise ValueError("Only LoRA tuning accepts multiple checkpoints.")
elif model_args.quantization_bit is not None and len(model_args.checkpoint_dir) != 1:
raise ValueError("Quantized model only accepts a single checkpoint.")
if model_args.quantization_bit is not None and (not training_args.do_train):
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")
if training_args.do_train and (not training_args.fp16):
logger.warning("We recommend enable fp16 mixed precision training.")
if (
training_args.local_rank != -1
and training_args.ddp_find_unused_parameters is None
and finetuning_args.finetuning_type == "lora"
):
logger.warning("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.")
training_args.ddp_find_unused_parameters = False
if data_args.max_samples is not None and data_args.streaming:
logger.warning("`max_samples` is incompatible with `streaming`. Disabling max_samples.")
data_args.max_samples = None
training_args.optim = "adamw_torch" if training_args.optim == "adamw_hf" else training_args.optim # suppress warning
if training_args.bf16:
if not torch.cuda.is_bf16_supported():
raise ValueError("Current device does not support bf16 training.")
model_args.compute_dtype = torch.bfloat16
else:
model_args.compute_dtype = torch.float16
model_args.model_max_length = data_args.max_source_length + data_args.max_target_length
# Log on each process the small summary:
logger.info("Process rank: {}, device: {}, n_gpu: {}\n distributed training: {}, compute dtype: {}".format(
training_args.local_rank, training_args.device, training_args.n_gpu,
bool(training_args.local_rank != -1), str(model_args.compute_dtype)
))
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
transformers.set_seed(training_args.seed)
return model_args, data_args, training_args, finetuning_args, generating_args, general_args
def get_infer_args(
args: Optional[Dict[str, Any]] = None
) -> Tuple[
ModelArguments,
DataArguments,
FinetuningArguments,
GeneratingArguments
]:
model_args, data_args, finetuning_args, generating_args = parse_infer_args(args)
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
if model_args.checkpoint_dir is not None:
if finetuning_args.finetuning_type != "lora":
if len(model_args.checkpoint_dir) != 1:
raise ValueError("Only LoRA tuning accepts multiple checkpoints.")
elif model_args.quantization_bit is not None and len(model_args.checkpoint_dir) != 1:
raise ValueError("Quantized model only accepts a single checkpoint.")
return model_args, data_args, finetuning_args, generating_args