mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-11-29 11:44:17 +08:00
290 lines
12 KiB
Python
290 lines
12 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import asyncio
|
|
import atexit
|
|
import json
|
|
from collections.abc import AsyncGenerator, AsyncIterator, Sequence
|
|
from typing import TYPE_CHECKING, Any, Optional, Union
|
|
|
|
import requests
|
|
from typing_extensions import override
|
|
|
|
from ..data import get_template_and_fix_tokenizer
|
|
from ..extras import logging
|
|
from ..extras.constants import AUDIO_PLACEHOLDER, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER, EngineName
|
|
from ..extras.misc import get_device_count, torch_gc
|
|
from ..extras.packages import is_sglang_available
|
|
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
|
from ..model import load_config, load_tokenizer
|
|
from ..model.model_utils.quantization import QuantizationMethod
|
|
from .base_engine import BaseEngine, Response
|
|
|
|
|
|
if is_sglang_available():
|
|
from sglang.utils import launch_server_cmd, terminate_process, wait_for_server # type: ignore
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ..data.mm_plugin import AudioInput, ImageInput, VideoInput
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class SGLangEngine(BaseEngine):
|
|
"""Inference engine for SGLang models.
|
|
|
|
This class wraps the SGLang engine to provide a consistent interface for text generation
|
|
that matches LLaMA Factory's requirements. It uses the SGLang HTTP server approach for
|
|
better interaction and performance. The engine launches a server process and communicates
|
|
with it via HTTP requests.
|
|
|
|
For more details on the SGLang HTTP server approach, see:
|
|
https://docs.sglang.ai/backend/send_request.html
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_args: "ModelArguments",
|
|
data_args: "DataArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
generating_args: "GeneratingArguments",
|
|
) -> None:
|
|
self.name = EngineName.SGLANG
|
|
self.model_args = model_args
|
|
config = load_config(model_args) # may download model from ms hub
|
|
if getattr(config, "quantization_config", None): # gptq models should use float16
|
|
quantization_config: dict[str, Any] = getattr(config, "quantization_config", None)
|
|
quant_method = quantization_config.get("quant_method", "")
|
|
if quant_method == QuantizationMethod.GPTQ and model_args.infer_dtype == "auto":
|
|
model_args.infer_dtype = "float16"
|
|
|
|
self.can_generate = finetuning_args.stage == "sft"
|
|
tokenizer_module = load_tokenizer(model_args)
|
|
self.tokenizer = tokenizer_module["tokenizer"]
|
|
self.processor = tokenizer_module["processor"]
|
|
self.tokenizer.padding_side = "left"
|
|
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args)
|
|
self.template.mm_plugin.expand_mm_tokens = False # for sglang generate
|
|
self.generating_args = generating_args.to_dict()
|
|
if model_args.adapter_name_or_path is not None:
|
|
self.lora_request = True
|
|
else:
|
|
self.lora_request = False
|
|
|
|
launch_cmd = [
|
|
"python3 -m sglang.launch_server",
|
|
f"--model-path {model_args.model_name_or_path}",
|
|
f"--dtype {model_args.infer_dtype}",
|
|
f"--context-length {model_args.sglang_maxlen}",
|
|
f"--mem-fraction-static {model_args.sglang_mem_fraction}",
|
|
f"--tp-size {model_args.sglang_tp_size if model_args.sglang_tp_size != -1 else get_device_count() or 1}",
|
|
f"--download-dir {model_args.cache_dir}",
|
|
"--log-level error",
|
|
]
|
|
if self.lora_request:
|
|
launch_cmd.extend(
|
|
[
|
|
"--max-loras-per-batch 1",
|
|
f"--lora-backend {model_args.sglang_lora_backend}",
|
|
f"--lora-paths lora0={model_args.adapter_name_or_path[0]}",
|
|
"--disable-radix-cache",
|
|
]
|
|
)
|
|
launch_cmd = " ".join(launch_cmd)
|
|
logger.info_rank0(f"Starting SGLang server with command: {launch_cmd}")
|
|
try:
|
|
torch_gc()
|
|
self.server_process, port = launch_server_cmd(launch_cmd)
|
|
self.base_url = f"http://localhost:{port}"
|
|
atexit.register(self._cleanup_server)
|
|
|
|
logger.info_rank0(f"Waiting for SGLang server to be ready at {self.base_url}")
|
|
wait_for_server(self.base_url, timeout=300)
|
|
logger.info_rank0(f"SGLang server initialized successfully at {self.base_url}")
|
|
try:
|
|
response = requests.get(f"{self.base_url}/get_model_info", timeout=5)
|
|
if response.status_code == 200:
|
|
model_info = response.json()
|
|
logger.info(f"SGLang server model info: {model_info}")
|
|
except Exception as e:
|
|
logger.debug(f"Note: could not get model info: {str(e)}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to start SGLang server: {str(e)}")
|
|
self._cleanup_server() # make sure to clean up any started process
|
|
raise RuntimeError(f"SGLang server initialization failed: {str(e)}.")
|
|
|
|
def _cleanup_server(self):
|
|
r"""Clean up the server process when the engine is destroyed."""
|
|
if hasattr(self, "server_process") and self.server_process:
|
|
try:
|
|
logger.info("Terminating SGLang server process")
|
|
terminate_process(self.server_process)
|
|
logger.info("SGLang server process terminated")
|
|
except Exception as e:
|
|
logger.warning(f"Error terminating SGLang server: {str(e)}")
|
|
|
|
async def _generate(
|
|
self,
|
|
messages: list[dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
images: Optional[list["ImageInput"]] = None,
|
|
videos: Optional[list["VideoInput"]] = None,
|
|
audios: Optional[list["AudioInput"]] = None,
|
|
**input_kwargs,
|
|
) -> AsyncIterator[dict[str, Any]]:
|
|
if images is not None and not any(IMAGE_PLACEHOLDER in message["content"] for message in messages):
|
|
messages[0]["content"] = IMAGE_PLACEHOLDER * len(images) + messages[0]["content"]
|
|
|
|
if videos is not None and not any(VIDEO_PLACEHOLDER in message["content"] for message in messages):
|
|
messages[0]["content"] = VIDEO_PLACEHOLDER * len(videos) + messages[0]["content"]
|
|
|
|
if audios is not None and not any(AUDIO_PLACEHOLDER in message["content"] for message in messages):
|
|
messages[0]["content"] = AUDIO_PLACEHOLDER * len(audios) + messages[0]["content"]
|
|
|
|
messages = self.template.mm_plugin.process_messages(
|
|
messages, images or [], videos or [], audios or [], self.processor
|
|
)
|
|
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
|
prompt_ids, _ = self.template.encode_oneturn(self.tokenizer, paired_messages, system, tools)
|
|
prompt_length = len(prompt_ids)
|
|
|
|
temperature: Optional[float] = input_kwargs.pop("temperature", None)
|
|
top_p: Optional[float] = input_kwargs.pop("top_p", None)
|
|
top_k: Optional[float] = input_kwargs.pop("top_k", None)
|
|
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
|
|
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
|
|
skip_special_tokens: Optional[bool] = input_kwargs.pop("skip_special_tokens", None)
|
|
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
|
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
|
|
stop: Optional[Union[str, list[str]]] = input_kwargs.pop("stop", None)
|
|
|
|
if num_return_sequences != 1:
|
|
raise NotImplementedError("SGLang only supports n=1.")
|
|
|
|
if "max_new_tokens" in self.generating_args:
|
|
max_tokens = self.generating_args["max_new_tokens"]
|
|
elif "max_length" in self.generating_args:
|
|
if self.generating_args["max_length"] > prompt_length:
|
|
max_tokens = self.generating_args["max_length"] - prompt_length
|
|
else:
|
|
max_tokens = 1
|
|
|
|
if max_length:
|
|
max_tokens = max_length - prompt_length if max_length > prompt_length else 1
|
|
|
|
if max_new_tokens:
|
|
max_tokens = max_new_tokens
|
|
|
|
sampling_params = {
|
|
"temperature": temperature if temperature is not None else self.generating_args["temperature"],
|
|
"top_p": (top_p if top_p is not None else self.generating_args["top_p"]) or 1.0, # top_p must > 0
|
|
"top_k": (top_k if top_k is not None else self.generating_args["top_k"]) or -1, # top_k must > 0
|
|
"stop": stop,
|
|
"stop_token_ids": self.template.get_stop_token_ids(self.tokenizer),
|
|
"max_new_tokens": max_tokens,
|
|
"repetition_penalty": (
|
|
repetition_penalty if repetition_penalty is not None else self.generating_args["repetition_penalty"]
|
|
)
|
|
or 1.0, # repetition_penalty must > 0
|
|
"skip_special_tokens": skip_special_tokens
|
|
if skip_special_tokens is not None
|
|
else self.generating_args["skip_special_tokens"],
|
|
}
|
|
|
|
def stream_request():
|
|
json_data = {
|
|
"input_ids": prompt_ids,
|
|
"sampling_params": sampling_params,
|
|
"stream": True,
|
|
}
|
|
if self.lora_request:
|
|
json_data["lora_request"] = ["lora0"]
|
|
response = requests.post(f"{self.base_url}/generate", json=json_data, stream=True)
|
|
if response.status_code != 200:
|
|
raise RuntimeError(f"SGLang server error: {response.status_code}, {response.text}")
|
|
|
|
for chunk in response.iter_lines(decode_unicode=False):
|
|
chunk = str(chunk.decode("utf-8"))
|
|
if chunk == "data: [DONE]":
|
|
break
|
|
|
|
if chunk and chunk.startswith("data:"):
|
|
yield json.loads(chunk[5:].strip("\n"))
|
|
|
|
return await asyncio.to_thread(stream_request)
|
|
|
|
@override
|
|
async def chat(
|
|
self,
|
|
messages: Sequence[dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
images: Optional[Sequence["ImageInput"]] = None,
|
|
videos: Optional[Sequence["VideoInput"]] = None,
|
|
audios: Optional[Sequence["AudioInput"]] = None,
|
|
**input_kwargs,
|
|
) -> list["Response"]:
|
|
final_output = None
|
|
generator = await self._generate(messages, system, tools, images, videos, audios, **input_kwargs)
|
|
for request_output in generator:
|
|
final_output = request_output
|
|
|
|
results = [
|
|
Response(
|
|
response_text=final_output["text"],
|
|
response_length=final_output["meta_info"]["completion_tokens"],
|
|
prompt_length=final_output["meta_info"]["prompt_tokens"],
|
|
finish_reason="stop" if final_output["meta_info"]["finish_reason"] == "stop" else "length",
|
|
)
|
|
]
|
|
return results
|
|
|
|
@override
|
|
async def stream_chat(
|
|
self,
|
|
messages: list[dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
images: Optional[list["ImageInput"]] = None,
|
|
videos: Optional[list["VideoInput"]] = None,
|
|
audios: Optional[list["AudioInput"]] = None,
|
|
**input_kwargs,
|
|
) -> AsyncGenerator[str, None]:
|
|
generated_text = ""
|
|
generator = await self._generate(messages, system, tools, images, videos, audios, **input_kwargs)
|
|
for result in generator:
|
|
delta_text = result["text"][len(generated_text) :]
|
|
generated_text = result["text"]
|
|
yield delta_text
|
|
|
|
@override
|
|
async def get_scores(
|
|
self,
|
|
batch_input: list[str],
|
|
**input_kwargs,
|
|
) -> list[float]:
|
|
raise NotImplementedError("SGLang engine does not support `get_scores`.")
|
|
|
|
def __del__(self):
|
|
r"""Ensure server is cleaned up when object is deleted."""
|
|
self._cleanup_server()
|
|
try:
|
|
atexit.unregister(self._cleanup_server)
|
|
except Exception:
|
|
pass
|