mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 18:02:19 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			45 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Docker
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Docker
		
	
	
	
	
	
# Use the NVIDIA official image with PyTorch 2.3.0
 | 
						|
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-24-02.html
 | 
						|
FROM nvcr.io/nvidia/pytorch:24.02-py3
 | 
						|
 | 
						|
# Define installation arguments
 | 
						|
ARG INSTALL_BNB=false
 | 
						|
ARG INSTALL_VLLM=false
 | 
						|
ARG INSTALL_DEEPSPEED=false
 | 
						|
ARG PIP_INDEX=https://pypi.org/simple
 | 
						|
 | 
						|
# Set the working directory
 | 
						|
WORKDIR /app
 | 
						|
 | 
						|
# Install the requirements
 | 
						|
COPY requirements.txt /app/
 | 
						|
RUN pip config set global.index-url $PIP_INDEX
 | 
						|
RUN python -m pip install --upgrade pip
 | 
						|
RUN python -m pip install -r requirements.txt
 | 
						|
 | 
						|
# Copy the rest of the application into the image
 | 
						|
COPY . /app/
 | 
						|
 | 
						|
# Install the LLaMA Factory
 | 
						|
RUN EXTRA_PACKAGES="metrics"; \
 | 
						|
    if [ "$INSTALL_BNB" = "true" ]; then \
 | 
						|
        EXTRA_PACKAGES="${EXTRA_PACKAGES},bitsandbytes"; \
 | 
						|
    fi; \
 | 
						|
    if [ "$INSTALL_VLLM" = "true" ]; then \
 | 
						|
        EXTRA_PACKAGES="${EXTRA_PACKAGES},vllm"; \
 | 
						|
    fi; \
 | 
						|
    if [ "$INSTALL_DEEPSPEED" = "true" ]; then \
 | 
						|
        EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
 | 
						|
    fi; \
 | 
						|
    pip install -e .[$EXTRA_PACKAGES] && \
 | 
						|
    pip uninstall -y transformer-engine
 | 
						|
 | 
						|
# Set up volumes
 | 
						|
VOLUME [ "/root/.cache/huggingface/", "/app/data", "/app/output" ]
 | 
						|
 | 
						|
# Expose port 7860 for the LLaMA Board
 | 
						|
EXPOSE 7860
 | 
						|
 | 
						|
# Expose port 8000 for the API service
 | 
						|
EXPOSE 8000
 |