hiyouga f9aee17f9d add Baichuan2 models
Former-commit-id: 62ce65c6282d2bbcb765354acc2819cc3e983a46
2023-09-06 18:36:04 +08:00

131 lines
4.6 KiB
Python

import gc
import torch
from typing import TYPE_CHECKING, List, Optional, Tuple
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList
from llmtuner.extras.constants import LAYERNORM_NAMES
if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel
class AverageMeter:
r"""
Computes and stores the average and current value.
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_logits_processor() -> LogitsProcessorList:
logits_processor = LogitsProcessorList()
logits_processor.append(InfNanRemoveLogitsProcessor())
return logits_processor
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
r"""
Returns the number of trainable parameters and number of all parameters in the model.
"""
trainable_params, all_param = 0, 0
for param in model.parameters():
num_params = param.numel()
# if using DS Zero 3 and the weights are initialized empty
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
# Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by 2
if param.__class__.__name__ == "Params4bit":
num_params = num_params * 2
all_param += num_params
if param.requires_grad:
trainable_params += num_params
return trainable_params, all_param
# Includes: (1) cast the layernorm in fp32 (2) make output embedding layer require grads (3) upcast the lm_head to fp32
# Inspired by: https://github.com/huggingface/peft/blob/c0209c35abbf88c63aa267800d98a8e212ed0a42/src/peft/utils/other.py#L35
def prepare_model_for_training(
model: "PreTrainedModel",
finetuning_type: str,
output_layer_name: Optional[str] = "lm_head",
use_gradient_checkpointing: Optional[bool] = True,
layer_norm_names: Optional[List[str]] = LAYERNORM_NAMES
) -> "PreTrainedModel":
for name, param in model.named_parameters():
if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names):
param.data = param.data.to(torch.float32)
if use_gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
model.gradient_checkpointing_enable()
model.config.use_cache = False # turn off when gradient checkpointing is enabled
if finetuning_type != "full" and hasattr(model, output_layer_name):
output_layer: torch.nn.Linear = getattr(model, output_layer_name)
input_dtype = output_layer.weight.dtype
class CastOutputToFloat(torch.nn.Sequential):
def forward(self, x: torch.Tensor) -> torch.Tensor:
return super().forward(x.to(input_dtype)).to(torch.float32)
setattr(model, output_layer_name, CastOutputToFloat(output_layer))
return model
def torch_gc() -> None:
r"""
Collects GPU memory.
"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def dispatch_model(model: "PreTrainedModel") -> "PreTrainedModel":
r"""
Dispatches a pre-trained model to GPUs with balanced memory.
Borrowed from: https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/modeling_utils.py#L2803
"""
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False): # do nothing
return model
if torch.cuda.device_count() > 1:
from accelerate import dispatch_model
from accelerate.utils import infer_auto_device_map, get_balanced_memory
if model._no_split_modules is None:
raise ValueError("The model class needs to implement the `_no_split_modules` attribute.")
kwargs = {"dtype": model.dtype, "no_split_module_classes": model._no_split_modules}
max_memory = get_balanced_memory(model, **kwargs)
# Make sure tied weights are tied before creating the device map.
model.tie_weights()
device_map = infer_auto_device_map(model, max_memory=max_memory, **kwargs)
return dispatch_model(model, device_map)
else:
return model.cuda()