LLaMA-Factory/src/utils/pairwise.py
hiyouga 4ae8a20e1d fix RM accuracy
Former-commit-id: 532a385ea60693fdf835e6bc8e240ff8d55ff3a7
2023-06-28 01:40:13 +08:00

61 lines
2.2 KiB
Python

import torch
import numpy as np
from typing import Dict, Sequence, Tuple, Union
from .data_collator import DynamicDataCollatorWithPadding
from .peft_trainer import PeftTrainer
from .other import get_logger
logger = get_logger(__name__)
def compute_accuracy(eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]:
preds, _ = eval_preds
return {"accuracy": (preds[0] > preds[1]).sum() / len(preds[0])}
class PairwiseDataCollatorWithPadding(DynamicDataCollatorWithPadding):
r"""
Data collator for pairwise data.
"""
def __call__(self, features: Sequence[Dict[str, Union[torch.Tensor, Sequence[int]]]]) -> Dict[str, torch.Tensor]:
r"""
Pads batched data to the longest sequence in the batch.
We generate 2 * n examples where the first n examples represent chosen examples and
the last n examples represent rejected examples.
"""
features = [{"input_ids": feature[key]} for key in ("accept_ids", "reject_ids") for feature in features]
return super().__call__(features)
class PairwisePeftTrainer(PeftTrainer):
r"""
Inherits PeftTrainer to compute pairwise loss.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.can_return_loss = True # override property to return eval_loss
def compute_loss(self, model, inputs, return_outputs=False):
r"""
Computes pairwise loss. The first n examples are chosen and the last n examples are rejected.
We use score on the EOS token to represent reward of the whole sentence.
Subclass and override to inject custom behavior. It should not be directly used by external scripts.
Note that the first element will be removed from the output tuple.
See: https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/trainer.py#L3509
"""
batch_size = inputs["input_ids"].size(0) // 2
_, _, values = model(**inputs)
r_accept, r_reject = values[:, -1].split(batch_size, dim=0)
loss = -torch.log(torch.sigmoid(r_accept - r_reject)).mean()
return (loss, [loss, r_accept, r_reject]) if return_outputs else loss