mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 11:42:49 +08:00
101 lines
3.2 KiB
Python
101 lines
3.2 KiB
Python
import gradio as gr
|
|
from typing import TYPE_CHECKING, Dict, Generator, List
|
|
|
|
from llmtuner.train import export_model
|
|
from llmtuner.webui.common import get_save_dir
|
|
from llmtuner.webui.locales import ALERTS
|
|
|
|
if TYPE_CHECKING:
|
|
from gradio.components import Component
|
|
from llmtuner.webui.engine import Engine
|
|
|
|
|
|
GPTQ_BITS = ["8", "4", "3", "2"]
|
|
|
|
|
|
def save_model(
|
|
lang: str,
|
|
model_name: str,
|
|
model_path: str,
|
|
adapter_path: List[str],
|
|
finetuning_type: str,
|
|
template: str,
|
|
max_shard_size: int,
|
|
export_quantization_bit: int,
|
|
export_quantization_dataset: str,
|
|
export_dir: str
|
|
) -> Generator[str, None, None]:
|
|
error = ""
|
|
if not model_name:
|
|
error = ALERTS["err_no_model"][lang]
|
|
elif not model_path:
|
|
error = ALERTS["err_no_path"][lang]
|
|
elif not export_dir:
|
|
error = ALERTS["err_no_export_dir"][lang]
|
|
elif export_quantization_bit in GPTQ_BITS and not export_quantization_dataset:
|
|
error = ALERTS["err_no_dataset"][lang]
|
|
elif export_quantization_bit not in GPTQ_BITS and not adapter_path:
|
|
error = ALERTS["err_no_adapter"][lang]
|
|
|
|
if error:
|
|
gr.Warning(error)
|
|
yield error
|
|
return
|
|
|
|
if adapter_path:
|
|
adapter_name_or_path = ",".join([get_save_dir(model_name, finetuning_type, adapter) for adapter in adapter_path])
|
|
else:
|
|
adapter_name_or_path = None
|
|
|
|
args = dict(
|
|
model_name_or_path=model_path,
|
|
adapter_name_or_path=adapter_name_or_path,
|
|
finetuning_type=finetuning_type,
|
|
template=template,
|
|
export_dir=export_dir,
|
|
export_size=max_shard_size,
|
|
export_quantization_bit=int(export_quantization_bit) if export_quantization_bit in GPTQ_BITS else None,
|
|
export_quantization_dataset=export_quantization_dataset
|
|
)
|
|
|
|
yield ALERTS["info_exporting"][lang]
|
|
export_model(args)
|
|
yield ALERTS["info_exported"][lang]
|
|
|
|
|
|
def create_export_tab(engine: "Engine") -> Dict[str, "Component"]:
|
|
with gr.Row():
|
|
max_shard_size = gr.Slider(value=1, minimum=1, maximum=100)
|
|
export_quantization_bit = gr.Dropdown(choices=["none", "8", "4", "3", "2"], value="none")
|
|
export_quantization_dataset = gr.Textbox(value="data/c4_demo.json")
|
|
|
|
export_dir = gr.Textbox()
|
|
export_btn = gr.Button()
|
|
info_box = gr.Textbox(show_label=False, interactive=False)
|
|
|
|
export_btn.click(
|
|
save_model,
|
|
[
|
|
engine.manager.get_elem_by_name("top.lang"),
|
|
engine.manager.get_elem_by_name("top.model_name"),
|
|
engine.manager.get_elem_by_name("top.model_path"),
|
|
engine.manager.get_elem_by_name("top.adapter_path"),
|
|
engine.manager.get_elem_by_name("top.finetuning_type"),
|
|
engine.manager.get_elem_by_name("top.template"),
|
|
max_shard_size,
|
|
export_quantization_bit,
|
|
export_quantization_dataset,
|
|
export_dir
|
|
],
|
|
[info_box]
|
|
)
|
|
|
|
return dict(
|
|
max_shard_size=max_shard_size,
|
|
export_quantization_bit=export_quantization_bit,
|
|
export_quantization_dataset=export_quantization_dataset,
|
|
export_dir=export_dir,
|
|
export_btn=export_btn,
|
|
info_box=info_box
|
|
)
|