mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-03 12:12:50 +08:00
80 lines
3.0 KiB
Python
80 lines
3.0 KiB
Python
# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py
|
|
|
|
from typing import TYPE_CHECKING, List, Optional
|
|
|
|
from ...data import get_dataset, split_dataset
|
|
from ...extras.constants import IGNORE_INDEX
|
|
from ...extras.ploting import plot_loss
|
|
from ...hparams import ModelArguments
|
|
from ...model import load_model, load_tokenizer
|
|
from ..utils import create_modelcard_and_push, create_ref_model
|
|
from .collator import DPODataCollatorWithPadding
|
|
from .trainer import CustomDPOTrainer
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
|
|
|
from ...hparams import DataArguments, FinetuningArguments
|
|
|
|
|
|
def run_dpo(
|
|
model_args: "ModelArguments",
|
|
data_args: "DataArguments",
|
|
training_args: "Seq2SeqTrainingArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
callbacks: Optional[List["TrainerCallback"]] = None,
|
|
):
|
|
tokenizer = load_tokenizer(model_args)
|
|
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
|
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
|
data_collator = DPODataCollatorWithPadding(
|
|
tokenizer=tokenizer,
|
|
pad_to_multiple_of=8,
|
|
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
|
)
|
|
|
|
# Create reference model
|
|
if finetuning_args.ref_model is None and (not training_args.do_train): # use the model itself
|
|
ref_model = model
|
|
else:
|
|
ref_model = create_ref_model(model_args, finetuning_args)
|
|
|
|
# Update arguments
|
|
training_args.remove_unused_columns = False # important for pairwise dataset
|
|
|
|
# Initialize our Trainer
|
|
trainer = CustomDPOTrainer(
|
|
model=model,
|
|
ref_model=ref_model,
|
|
args=training_args,
|
|
finetuning_args=finetuning_args,
|
|
tokenizer=tokenizer,
|
|
data_collator=data_collator,
|
|
callbacks=callbacks,
|
|
**split_dataset(dataset, data_args, training_args),
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
|
trainer.save_model()
|
|
trainer.log_metrics("train", train_result.metrics)
|
|
trainer.save_metrics("train", train_result.metrics)
|
|
trainer.save_state()
|
|
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
|
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
|
|
|
|
# Evaluation
|
|
if training_args.do_eval:
|
|
metrics = trainer.evaluate(metric_key_prefix="eval")
|
|
if id(model) == id(ref_model): # unable to compute rewards without a reference model
|
|
remove_keys = [key for key in metrics.keys() if "rewards" in key]
|
|
for key in remove_keys:
|
|
metrics.pop(key)
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
# Create model card
|
|
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|