mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-23 14:22:51 +08:00
55 lines
2.1 KiB
Python
55 lines
2.1 KiB
Python
import numpy as np
|
|
from dataclasses import dataclass
|
|
from typing import TYPE_CHECKING, Dict, Sequence, Tuple, Union
|
|
|
|
import jieba
|
|
from rouge_chinese import Rouge
|
|
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
|
|
|
from llmtuner.extras.constants import IGNORE_INDEX
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers.tokenization_utils import PreTrainedTokenizer
|
|
|
|
|
|
@dataclass
|
|
class ComputeMetrics:
|
|
r"""
|
|
Wraps the tokenizer into metric functions, used in Seq2SeqPeftTrainer.
|
|
"""
|
|
|
|
tokenizer: "PreTrainedTokenizer"
|
|
|
|
def __call__(self, eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]:
|
|
r"""
|
|
Uses the model predictions to compute metrics.
|
|
"""
|
|
preds, labels = eval_preds
|
|
score_dict = {"accuracy": [], "rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []}
|
|
|
|
preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id)
|
|
labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id)
|
|
|
|
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True)
|
|
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True)
|
|
|
|
for pred, label in zip(decoded_preds, decoded_labels):
|
|
hypothesis = list(jieba.cut(pred))
|
|
reference = list(jieba.cut(label))
|
|
|
|
if len(" ".join(hypothesis).split()) == 0 or len(" ".join(reference).split()) == 0:
|
|
result = {"rouge-1": {"f": 0.0}, "rouge-2": {"f": 0.0}, "rouge-l": {"f": 0.0}}
|
|
else:
|
|
rouge = Rouge()
|
|
scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference))
|
|
result = scores[0]
|
|
|
|
for k, v in result.items():
|
|
score_dict[k].append(round(v["f"] * 100, 4))
|
|
|
|
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
|
|
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
|
|
score_dict["accuracy"].append(float(len(label) != 0 and pred[:len(label)] == label))
|
|
|
|
return {k: float(np.mean(v)) for k, v in score_dict.items()}
|