mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-05 13:12:53 +08:00
170 lines
6.2 KiB
Python
170 lines
6.2 KiB
Python
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Sequence, Tuple
|
|
|
|
from ..chat import ChatModel
|
|
from ..data import Role
|
|
from ..extras.constants import PEFT_METHODS
|
|
from ..extras.misc import torch_gc
|
|
from ..extras.packages import is_gradio_available
|
|
from .common import QUANTIZATION_BITS, get_save_dir
|
|
from .locales import ALERTS
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ..chat import BaseEngine
|
|
from .manager import Manager
|
|
|
|
|
|
if is_gradio_available():
|
|
import gradio as gr
|
|
|
|
|
|
class WebChatModel(ChatModel):
|
|
def __init__(self, manager: "Manager", demo_mode: bool = False, lazy_init: bool = True) -> None:
|
|
self.manager = manager
|
|
self.demo_mode = demo_mode
|
|
self.engine: Optional["BaseEngine"] = None
|
|
|
|
if not lazy_init: # read arguments from command line
|
|
super().__init__()
|
|
|
|
if demo_mode and os.environ.get("DEMO_MODEL") and os.environ.get("DEMO_TEMPLATE"): # load demo model
|
|
model_name_or_path = os.environ.get("DEMO_MODEL")
|
|
template = os.environ.get("DEMO_TEMPLATE")
|
|
infer_backend = os.environ.get("DEMO_BACKEND", "huggingface")
|
|
super().__init__(
|
|
dict(model_name_or_path=model_name_or_path, template=template, infer_backend=infer_backend)
|
|
)
|
|
|
|
@property
|
|
def loaded(self) -> bool:
|
|
return self.engine is not None
|
|
|
|
def load_model(self, data) -> Generator[str, None, None]:
|
|
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
|
|
lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path")
|
|
finetuning_type, checkpoint_path = get("top.finetuning_type"), get("top.checkpoint_path")
|
|
error = ""
|
|
if self.loaded:
|
|
error = ALERTS["err_exists"][lang]
|
|
elif not model_name:
|
|
error = ALERTS["err_no_model"][lang]
|
|
elif not model_path:
|
|
error = ALERTS["err_no_path"][lang]
|
|
elif self.demo_mode:
|
|
error = ALERTS["err_demo"][lang]
|
|
|
|
if error:
|
|
gr.Warning(error)
|
|
yield error
|
|
return
|
|
|
|
if get("top.quantization_bit") in QUANTIZATION_BITS:
|
|
quantization_bit = int(get("top.quantization_bit"))
|
|
else:
|
|
quantization_bit = None
|
|
|
|
yield ALERTS["info_loading"][lang]
|
|
args = dict(
|
|
model_name_or_path=model_path,
|
|
finetuning_type=finetuning_type,
|
|
quantization_bit=quantization_bit,
|
|
quantization_method=get("top.quantization_method"),
|
|
template=get("top.template"),
|
|
flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
|
|
use_unsloth=(get("top.booster") == "unsloth"),
|
|
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
|
|
infer_backend=get("infer.infer_backend"),
|
|
infer_dtype=get("infer.infer_dtype"),
|
|
)
|
|
|
|
if checkpoint_path:
|
|
if finetuning_type in PEFT_METHODS: # list
|
|
args["adapter_name_or_path"] = ",".join(
|
|
[get_save_dir(model_name, finetuning_type, adapter) for adapter in checkpoint_path]
|
|
)
|
|
else: # str
|
|
args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, checkpoint_path)
|
|
|
|
super().__init__(args)
|
|
yield ALERTS["info_loaded"][lang]
|
|
|
|
def unload_model(self, data) -> Generator[str, None, None]:
|
|
lang = data[self.manager.get_elem_by_id("top.lang")]
|
|
|
|
if self.demo_mode:
|
|
gr.Warning(ALERTS["err_demo"][lang])
|
|
yield ALERTS["err_demo"][lang]
|
|
return
|
|
|
|
yield ALERTS["info_unloading"][lang]
|
|
self.engine = None
|
|
torch_gc()
|
|
yield ALERTS["info_unloaded"][lang]
|
|
|
|
def append(
|
|
self,
|
|
chatbot: List[List[Optional[str]]],
|
|
messages: Sequence[Dict[str, str]],
|
|
role: str,
|
|
query: str,
|
|
) -> Tuple[List[List[Optional[str]]], List[Dict[str, str]], str]:
|
|
return chatbot + [[query, None]], messages + [{"role": role, "content": query}], ""
|
|
|
|
def stream(
|
|
self,
|
|
chatbot: List[List[Optional[str]]],
|
|
messages: Sequence[Dict[str, str]],
|
|
system: str,
|
|
tools: str,
|
|
image: Optional[Any],
|
|
video: Optional[Any],
|
|
max_new_tokens: int,
|
|
top_p: float,
|
|
temperature: float,
|
|
) -> Generator[Tuple[List[List[Optional[str]]], List[Dict[str, str]]], None, None]:
|
|
chatbot[-1][1] = ""
|
|
response = ""
|
|
for new_text in self.stream_chat(
|
|
messages,
|
|
system,
|
|
tools,
|
|
images=[image] if image else None,
|
|
videos=[video] if video else None,
|
|
max_new_tokens=max_new_tokens,
|
|
top_p=top_p,
|
|
temperature=temperature,
|
|
):
|
|
response += new_text
|
|
if tools:
|
|
result = self.engine.template.extract_tool(response)
|
|
else:
|
|
result = response
|
|
|
|
if isinstance(result, list):
|
|
tool_calls = [{"name": tool[0], "arguments": json.loads(tool[1])} for tool in result]
|
|
tool_calls = json.dumps(tool_calls, indent=4, ensure_ascii=False)
|
|
output_messages = messages + [{"role": Role.FUNCTION.value, "content": tool_calls}]
|
|
bot_text = "```json\n" + tool_calls + "\n```"
|
|
else:
|
|
output_messages = messages + [{"role": Role.ASSISTANT.value, "content": result}]
|
|
bot_text = result
|
|
|
|
chatbot[-1][1] = bot_text
|
|
yield chatbot, output_messages
|