hiyouga dd992dcce9 fix #3316
Former-commit-id: 7395e9e90a209228ff563ab54319955608850fc3
2024-04-17 22:54:34 +08:00

175 lines
6.7 KiB
Python

import inspect
from enum import Enum, unique
from functools import partial
from typing import TYPE_CHECKING, Any, Dict, List, Optional
import torch
from transformers import PreTrainedModel
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.utils import cached_file
from transformers.utils.versions import require_version
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
from ..extras.logging import get_logger
if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedTokenizer
from ..hparams import ModelArguments
logger = get_logger(__name__)
@unique
class QuantizationMethod(str, Enum):
r"""
Borrowed from `transformers.utils.quantization_config.QuantizationMethod`.
"""
BITS_AND_BYTES = "bitsandbytes"
GPTQ = "gptq"
AWQ = "awq"
AQLM = "aqlm"
QUANTO = "quanto"
def add_z3_leaf_module(model: "PreTrainedModel", module: "torch.nn.Module") -> None:
r"""
Sets module as a leaf module to skip partitioning in deepspeed zero3.
"""
if is_deepspeed_zero3_enabled():
require_version("deepspeed>=0.13.0", "To fix: pip install deepspeed>=0.13.0")
from deepspeed.utils import set_z3_leaf_modules # type: ignore
set_z3_leaf_modules(model, [module])
def find_all_linear_modules(model: "PreTrainedModel") -> List[str]:
r"""
Finds all available modules to apply lora or galore.
"""
quantization_method = getattr(model, "quantization_method", None)
if quantization_method is None:
linear_cls = torch.nn.Linear
elif quantization_method == QuantizationMethod.BITS_AND_BYTES:
import bitsandbytes as bnb
linear_cls = bnb.nn.Linear4bit if getattr(model, "is_loaded_in_4bit", False) else bnb.nn.Linear8bitLt
else:
raise ValueError("Finding linear modules for {} models is not supported.".format(quantization_method))
output_layer_names = ["lm_head"]
if model.config.model_type == "chatglm":
output_layer_names.append("output_layer")
elif model.config.model_type == "internlm2":
output_layer_names.append("output")
module_names = set()
for name, module in model.named_modules():
if isinstance(module, linear_cls) and not any(output_layer in name for output_layer in output_layer_names):
module_names.add(name.split(".")[-1])
logger.info("Found linear modules: {}".format(",".join(module_names)))
return list(module_names)
def find_expanded_modules(model: "PreTrainedModel", target_modules: List[str], num_layer_trainable: int) -> List[str]:
r"""
Finds the modules in the expanded blocks to apply lora.
"""
num_layers = getattr(model.config, "num_hidden_layers", None)
if not num_layers:
raise ValueError("Model was not supported.")
if num_layers % num_layer_trainable != 0:
raise ValueError(
"`num_layers` {} should be divisible by `num_layer_trainable` {}.".format(num_layers, num_layer_trainable)
)
stride = num_layers // num_layer_trainable
trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride)
trainable_layers = [".{:d}.".format(idx) for idx in trainable_layer_ids]
module_names = []
for name, _ in model.named_modules():
if any(target_module in name for target_module in target_modules) and any(
trainable_layer in name for trainable_layer in trainable_layers
):
module_names.append(name)
logger.info("Apply lora to layers: {}".format(",".join(map(str, trainable_layer_ids))))
return module_names
def gradient_checkpointing_enable(
self: "PreTrainedModel", gradient_checkpointing_kwargs: Optional[Dict[str, Any]] = None
) -> None:
r"""
Activates gradient checkpointing for the current model.
Modification of the original method to enable gradient checkpointing for block-wise optimizer.
"""
from torch.utils.checkpoint import checkpoint
if not self.supports_gradient_checkpointing:
raise ValueError("{} does not support gradient checkpointing.".format(self.__class__.__name__))
if gradient_checkpointing_kwargs is None:
gradient_checkpointing_kwargs = {"use_reentrant": True}
gradient_checkpointing_func = partial(checkpoint, **gradient_checkpointing_kwargs)
def custom_gradient_checkpointing_func(func, *args, **kwargs):
module: "torch.nn.Module" = func.__self__
if any(param.requires_grad for param in module.parameters()):
for arg in args:
if torch.is_tensor(arg) and torch.is_floating_point(arg):
arg.requires_grad_(True)
return gradient_checkpointing_func(func, *args, **kwargs)
if "value" in inspect.signature(self._set_gradient_checkpointing).parameters: # old GC format
self.apply(partial(self._set_gradient_checkpointing, value=True))
logger.warning("You are using the old GC format, some features (e.g. BAdam) will be invalid.")
else:
self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=custom_gradient_checkpointing_func)
def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]:
r"""
Loads value head parameters from Hugging Face Hub or local disk.
Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`.
"""
kwargs = {"path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir, "token": model_args.hf_hub_token}
try:
from safetensors import safe_open
vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs)
with safe_open(vhead_file, framework="pt", device="cpu") as f:
return {key: f.get_tensor(key) for key in f.keys()}
except Exception as err:
logger.info("Failed to load {}: {}".format(V_HEAD_SAFE_WEIGHTS_NAME, str(err)))
try:
vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs)
return torch.load(vhead_file, map_location="cpu")
except Exception as err:
logger.info("Failed to load {}: {}".format(V_HEAD_WEIGHTS_NAME, str(err)))
logger.info("Provided path ({}) does not contain value head weights.".format(path_or_repo_id))
logger.info("Ignore these messages if you are not resuming the training of a value head model.")
return None
def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer"):
if "AutoConfig" in getattr(config, "auto_map", {}):
config.__class__.register_for_auto_class()
if "AutoModelForCausalLM" in getattr(config, "auto_map", {}):
model.__class__.register_for_auto_class()
if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
tokenizer.__class__.register_for_auto_class()